
Signal Processing 228 (2025) 109703 

A
0

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Distributed multi-object tracking under limited field of view heterogeneous
sensors with density clustering
Fei Chen a,1, Hoa Van Nguyen b,1, Alex S. Leong c, Sabita Panicker c, Robin Baker d,
Damith C. Ranasinghe a,∗

a School of Computer and Mathematical Science, The University of Adelaide, Adelaide, SA 5005, Australia
b School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Bentley, WA 6102, Australia
c Platforms Division, Defence Science and Technology Group, Australia
d Land and Integrated Force Division, Defence Science and Technology Group, Edinburgh, SA, Australia

A R T I C L E I N F O

Keywords:
Multi-sensor multi-object tracking
Distributed multi-object tracking
Label consistency
Clustering algorithms

A B S T R A C T

We consider the problem of tracking multiple, unknown, and time-varying numbers of objects using a
distributed network of heterogeneous sensors. In an effort to derive a formulation for practical settings, we
consider limited and unknown sensor field-of-views (FoVs), sensors with limited local computational resources
and communication channel capacity. The resulting distributed multi-object tracking algorithm involves solving
an NP-hard multidimensional assignment problem either optimally for small-size problems or sub-optimally
for general practical problems. For general problems, we propose an efficient distributed multi-object tracking
algorithm that performs track-to-track fusion using a clustering-based analysis of the state space transformed
into a density space to mitigate the complexity of the assignment problem. The proposed algorithm can more
efficiently group local track estimates for fusion than existing approaches. To ensure we achieve globally
consistent identities for tracks across a network of nodes as objects move between FoVs, we develop a
graph-based algorithm to achieve label consensus and minimise track segmentation. Numerical experiments
with synthetic and real-world trajectory datasets demonstrate that our proposed method is significantly more
computationally efficient than state-of-the-art solutions, achieving similar tracking accuracy and bandwidth
requirements but with improved label consistency.
1. Introduction

Multi-Object Tracking (MOT) aims to detect, classify, and estimate
the trajectories of an unknown and time-varying number of objects
using noisy sensor measurements. The objects of interest can be ei-
ther stationary, such as mines [1], mobile, such as vehicles [2], or
hybrid, such as offshore critical infrastructures [3]. In particular, MOT
involves estimating the trajectories of the objects and maintaining
their provisional identities or labels. Trajectories are important for
capturing the behaviour of the objects, while labels provide the means
to distinguish individual object trajectories and allow human/machine
users to communicate information regarding the relevant objects of
interest, consistently. Solving MOT problems is challenging due to
noisy measurements, false alarms, misdetections, and unknown data
association (i.e., unknown measurement-to-object association). Despite
these challenges, MOT plays significant roles in various applications
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and domains such as surveillance [4,5], aerospace [6], cell biology [7,
8],robotics [9–11], and computer vision [12–14].

General MOT algorithms can be categorised into three main frame-
works: Multiple Hypothesis Tracking (MHT) [4–6], Joint Probabilistic
Data Association (JPDA) [5,15,16], and Random Finite Sets (RFS) [17,
18]. Traditional approaches like MHT and JPDA solve the
measurement-to-object assignment problem before estimating object
states using a single-object filter. JPDA computes association probabil-
ities between objects and measurements by considering their statistical
properties [19,20]. However, JPDA lacks a mechanism for handling
object birth and death, requiring separate procedures for managing
a time-varying number of objects [7,21]. MHT addresses data asso-
ciation challenges by forming and evaluating multiple hypotheses on
object-to-measurement associations over multiple scans or frames [4,6],
with notable approaches like Hypothesis-Oriented MHT (HOMHT) [22,
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23] and Track-Oriented MHT (TOMHT) [24–26]. RFS, a newer ap-
roach, directly models the multi-object state as a set-valued random
ariable, enabling estimation without explicitly solving the data as-
ociation problem [17] such as the Probability Hypothesis Density
PHD) [27] and Cardinalized PHD (CPHD) [28] filters, the Multi-
ernoulli (MB) filter [17,29], the Poisson Multi-Bernoulli Mixture
PMBM) filter [30], the Labelled Multi-Bernoulli (LMB) filter [31], and
he Generalised Labelled Multi-Bernoulli (GLMB) filter [32,33]—the

first exact closed-form multi-object tracking algorithm.
Recently, Wireless Sensor Networks (WSN) systems with intercon-

nected nodes [34] and networked Autonomous Underwater Vehicles
AUV) [35] equipped with sensing, communication, and processing

capabilities, have garnered significant research interest for MOT ap-
plications. These networks address the practical challenge of limited
field of view (FoV) from a single node, crucial in scenarios with objects
dispersed over large areas [36], such as tracking air traffic [37], visual
tracking of wildlife [38], and monitoring space debris [39–41]. Multi-
le sensors in a network facilitate more accurate tracking by fusing the

common information and generating holistic multi-object trajectories
by augmenting exclusive information gathered by FoV-limited sensors
at each node.

The benefits of sensor networks for MOT motivate the investigation
of distributed MOT (DMOT). Unlike centralised MOT, where measure-
ments are sent to a fusion centre, DMOT allows each sensor node to
perate independently, offering scalability, flexibility, and robustness
o node failures [42,43]. However, DMOT is a non-trivial problem [44].

It encompasses the challenges inherent to an MOT problem, such as the
appearance and disappearance of objects, false measurements, misde-
tections, and uncertainties in measurement-to-object association [17,
32]. Further, DMOT requires solving a complex fusion problem for
achieving kinematic and label consensus in a distributed environment
where sensors operate independently, possess heterogeneous sensing
apabilities [35,36], and are limited by computational capabilities and
ommunication bandwidth [45]. Information fusion in DMOT is prone

to the ‘‘double counting ’’ problem [46], necessitating a suitable fusion
algorithm to improve tracking accuracy by fusing common information
while preserving the complementary information from limited FoV
sensors [47].

Recent algorithms, based on the RFS framework, offer a principled
eneralisation from single object tracking to MOT and DMOT. RFS-
ased algorithms for multi-object density fusion generally follow two

main approaches: (i) Geometric Averaging (GA) (also known as Gen-
ralised Covariance Intersection or GCI), such as GA-PHD [44,48],

GA-CPHD [49], GA-MB [50], and GA-GLMB/LMB [46,51,52]; (ii) Arith-
etic Averaging (AA), including AA-PHD [53–56], AA-CPHD [57], AA-

MB [58], AA-LMB/GLMB [59], and AA-PMBM [60]. A recent study
ndicated that both GA and AA fusion methodologies fundamentally
esemble the Fréchet means [61], defining the central tendency of
istributions within arbitrary metric spaces.

The multi-object density fusion techniques offer elegant conceptual
olutions but their realisation demands substantial computational and
ommunication bandwidth due to the large number of parameters
esulting in a multi-object density, making them challenging to em-

ploy for practical, real-time applications. These challenges become
especially pronounced as the number of interconnected nodes and
bjects continues to increase [47,62]. Further, both GA and AA fusion

methods experience significant performance degradation when sensors
have disparate FoVs. This issue is particularly acute for GA, which
effectively preserves only objects within the intersection of all sensors’
oVs [57,63]. While AA fusion partially mitigates this problem because
f its additive nature, it still faces challenges when FoV inconsistencies
re not adequately considered [64]. Although density-based fusion

methods with limited FoVs were investigated using GA-PHD in [48] and
A-PHD in [54], the algorithms require knowing FoV information of all

sensor nodes. A robust AA-PHD fusion method for unknown FoVs was
subsequently proposed in [64]. Notably, these aforementioned density
2 
fusion methods are mainly employed for unlabelled multi-object den-
sities to tackle only multi-object state estimation problems, i.e., without
rajectory (or label) information.

In the context of DMOT, dealing with labelled multi-object den-
sity fusion for tracking with networks of sensor nodes, regardless of
whether nodes share the same FoV, comparing labelled densities from
ifferent nodes is challenging. In particular, labels are discrete random
ariables defined by users or nodes to distinguish multiple distinct
bjects and usually vary across different nodes. Standard divergences
e.g., Kullback–Leibler divergence) are undefined for labelled densities
ith different supports.

An alternative to density fusion is track-to-track fusion. This leads
to solving a multi-dimensional assignment problem for multiple nodes.
Unfortunately, optimal solutions to the problem have an NP-hard com-
lexity. Although this can be addressed with heuristics or techniques

such as sequential pairwise matching [65], traditional track-to-track
usion assumes zero false tracks and missed tracks, in other words,
he number of local tracks from any two nodes is assumed to be the
ame [66–72]. However, this is not a realistic assumption in settings

with limited FoV sensors and/or when the number of objects is time-
varying [47]. Importantly, under false and missed tracks, prominent
in limited or unknown FoV settings, the label consistency problem is
exacerbated as a single label must be reached for fused tracks.

Track-to-track fusion under limited, unknown FoV sensors has re-
cently been investigated in [47,73]. The DMOT method in [47] employs
pairwise matching to manage the complexity of the multi-dimensional
assignment problem and addresses the label consistency problem—
nsuring globally consistent labels for the consensus tracks [47,53,74],

i.e. achieving globally consistent trajectories at each node to construct a
single integrated air picture (SIAP) across a sensor network. In contrast,
n [73], complexity is mitigated by using clustering with Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [75] algorithm
to analyse and fuse shared JPDA filter object densities. Using cluster
analysis as a method for mitigating complexity, significantly reduces
the computational cost at a node compared to pairwise matching
in [47]. However, analysis with DBSCAN [75] necessitates a prior
ensity threshold—hyper parameter—to distinguish between data points
n a clustering space, but determining a suitable density threshold is
racking-scenario dependent and a non-trivial task [76]. Importantly, the

reliance on densities leads to increasing demands on communication
bandwidth, while the label consistency problem in DMOT remains
unresolved.

In this study, we propose a new track-to-track fusion method for
imited, heterogeneous, unknown FoV sensors to advance DMOT. We
itigate the labelled density fusion problem by considering fusing

abelled estimates of local tracks shared by nodes instead of labelled
ensities. But first, we fuse estimates to achieve kinematic consensus
nd then tackle the label consistency problem to achieve globally con-
istent labels for tracks across a sensor network. In achieving kinematic
onsensus, we alleviate the complexity of the assignment problem
hat arises in fusing estimates by introducing a contemporary cluster

analysis-based approach to overcome the difficulty in identifying suit-
able density thresholds to efficiently group estimates for fusion. To
address the label consistency problem, we introduce a Weighted Graph
Label (WGL) algorithm designed to maintain a record of association
history between track labels from different nodes to ultimately facilitate
label consensus and SIAP. In particular, the approach offers enhanced
robustness against outlier labels compared to the prior state-of-the-art
method. Importantly, our approach advances DMOT by addressing key
challenges in practical problems:

• Sensor heterogeneity and Unknown FoVs: We fuse labelled
estimates instead of labelled multi-object densities. Therefore:
(i) our approach is versatile in handling sensor heterogeneity
and unknown FoVs, ensuring applicability across diverse practical
scenarios; and (ii) importantly, is agnostic to the choice of the

local MOT filter at each sensor node.
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Table 1
Basic notations.

Symbol Description

 Set of sensor nodes
𝐺 Weighted label graph
𝐷 Clustering index
X State space
L Label space
I = L × Global label space
 ∶ X × I → I Label extraction function
 ∶ X × I → X State extraction function
𝐱 = (𝑥,𝓁) Labelled single-object state
𝐗 ⊂ X × L Labelled multi-object state
𝐗(𝑛) ⊂ X × I Set of non-fused local labelled state estimates of node 𝑛
𝑀 (𝑛) Number of non-fused local state estimates of node 𝑛, i.e. cardinality of 𝐗(𝑛)

𝐗(local) ⊂ X × I Set of non-fused local labelled state estimates
𝐗(local)

𝑚 ⊂ X × I Set of non-fused local labelled state estimates with the same clustering index 𝑚
𝐗(global) ⊂ X × I Set of consensed global labelled state estimates
𝐋(local)
𝑚 Set of non-fused local labels with the same clustering index 𝑚

𝐋(global) Set of consensed global labels
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• Limited computational capabilities: To mitigate the problems
faced in fusing labelled multi-object densities (tracks), we fuse
estimates and subsequently solve the resulting label consistency
problem. We reduce the computational complexity of the result-
ing fusion problem by using a more generalisable cluster anal-
ysis formulation. Notably, the method we introduce eliminates
the difficult problem of identifying suitable density threshold
hyper-parameters.

• Bandwidth-limited communication channels: By fusing la-
belled estimates instead of densities, we significantly reduce
the volume of data exchanged and consequently, demands on
communication bandwidth. This makes our technique suitable for
practical, bandwidth-limited applications.

The remainder of this paper is organised as follows. We provide
ackground to aid with the problem formulation and our evaluations in

Section 2. Section 3 defines the problem and presents our proposed fu-
ion method and label consensus algorithm. Section 4 details numerical
xperiments, results and comparisons with existing methods. Section 5

discusses concluding remarks.

2. Background

This section provides our notation conventions, the necessary back-
round on some fundamental concepts of MOT within the RFS frame-

work in Section 2.2, and background on clustering algorithms in Sec-
tion 2.3.

2.1. Notation

We follow the notation conventions in [31]. Lowercase letters (e.g.,
𝑥, 𝐱) denote single-object states, while uppercase letters (e.g., 𝑋 ,𝐗)
denote multi-object states. Unbold letters denote unlabelled states and
their densities (𝑋 , 𝜋), bold letters represent labelled states and their
densities (𝐗, 𝝅), while spaces are in blackboard letters (X, L). For a
set 𝑋,  (𝑋) denotes the class of finite subsets of 𝑋, 𝑛(𝑋) denotes the
class of finite subsets of 𝑋 with cardinality 𝑛, and 1𝑋 (⋅) is the indicator
function of 𝑋 whose cardinality is |𝑋|. The multi-object exponential 𝑓𝑋

for a function 𝑓 is defined as ∏

𝑥∈𝑋 𝑓 (𝑥), with 𝑓 ∅ = 1. We denote the
generalised Kronecker delta function by 𝛿𝑌 (𝑋), equalling 1 if 𝑋 = 𝑌
and 0 otherwise. The inner product ∫ 𝑓 (𝑥)𝑔(𝑥)𝑑 𝑥 is denoted as ⟨𝑓 , 𝑔⟩
for brevity.

We summarise a description of notations in Table 1 and abbrevia-
ions in Table 2.
3 
2.2. Labelled Multi-Bernoulli (LMB) filter

Solving MOT problems is challenging due to uncertainty in physical
ensors, such as noisy measurements, misdetections, false alarms and
nknown data association. Despite these formidable challenges, several
OT algorithms have been developed, which can be categorised into

hree main frameworks: MHT, JPDA and RFS. The RFS framework
as gained more recent popularity due to its rigorous mathematical
oundation and provides an effective method for managing complex
racking scenarios. This is achieved by treating the state of multiple
bjects as a finite set and subsequently utilising Finite Set Statistics
FISST) techniques to estimate the evolving set over time. Due to its
igorous mathematical basis, several RFS-based filters have been devel-
ped, including the Probability Hypothesis Density (PHD) filter [27],

the Cardinalized Probability Hypothesis Density (CPHD) filter [28], the
ulti-Bernoulli (MB) filter [17,29], the Poisson Multi-Bernoulli Mixture

(PMBM) filter [30], the Labelled Multi-Bernoulli (LMB) filter [31], and
the Generalised Labelled Multi-Bernoulli (GLMB) filter [32,33]—the
first exact closed-form multi-object tracking algorithm.

In particular, the LMB filter [31] serves as an approximation to
the GLMB filter, significantly reducing the number of association hy-
potheses while maintaining reasonable tracking performance. Given
our primary focus on developing an efficient DMOT algorithm within
the constraints of limited computational resources, we have chosen
to employ the LMB filter as our tracking algorithm at local sensor
nodes. However, it is important to highlight that our proposed DMOT
algorithm is agnostic to the choice of local MOT filters, including but
not limited to MHT and JPDA. The following presents the necessary
background on the LMB filter employed in our evaluations.

Labelled Multi-Bernoulli (LMB) RFS. An LMB RFS 𝐗 is fully charac-
erised by the parameter set 𝝅 = {𝑟(𝓁), 𝑝(⋅,𝓁)}𝓁∈L, where 𝑟(𝓁) is the

label existence probability and 𝑝(⋅,𝓁) is the spatial label density, with
∫ 𝑝(𝑥,𝓁)𝑑 𝑥 = 1. The LMB density is given by [31]

𝝅(𝐗) =▵ (𝐗)𝑤((𝐗))𝑝𝐗. (1)

Here, (𝐗) = {(𝐱) ∶ 𝐱 ∈ 𝐗} is the set of labels of the labelled RFS
𝐗 where  ∶ X × L → L is the label projection given by (𝑥,𝓁) = 𝓁,
▵ (𝐗) = 𝛿

|𝐗|(|(𝐗)|) is an indicator for distinct labels, 𝑤(𝐿) = 𝑟𝐿(1 −
𝑟)L⧵𝐿, and 𝑝(𝐱) = 𝑝(𝑥,𝓁). For brevity, we represent the LMB density as
𝝅 = {𝑟(𝓁), 𝑝(⋅,𝓁)}𝓁∈L =

{

(𝑤(𝐼), 𝑝) ∶ 𝐼 ∈  (L)
}

.

RFS based Multi-object Filtering Theory. Given a labelled RFS 𝐗𝑘 at
time 𝑘, the corresponding multi-object density can be propagated using
prediction and update steps of the Bayes multi-object filter:

𝝅𝑘+1|𝑘(𝐗𝑘+1|𝑍1∶𝑘) = 𝛷𝑘+1|𝑘(𝐗𝑘+1|𝐗)𝝅𝑘(𝐗|𝑍1∶𝑘)𝛿𝐗 (2)
∫
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Table 2
Abbreviations.

Acronym Full texts Acronym Full texts

AA Arithmetic Averaging MHT Multiple Hypothesis Tracking
AUV Autonomous Underwater Vehicles MOT Multi-Object Tracking
CDP Clustering Density Peak MS Multi-Sensor
CPHD Cardinalized Probability Hypothesis Density OSPA Optimal Sub-Pattern Assignment
DBSCAN Density-Based Spatial Clustering of OSPA(2) OSPA-on-OSPA

Applications with Noise PHD Probability Hypothesis Density
FoV Field of View PMBM Poisson Multi-Bernoulli Mixture
GA Geometric Averaging RFS Random Finite Set
GLMB Generalised Labelled Multi-Bernoulli SIAP Single Integrated Air Picture
JPDA Joint Probabilistic Data Association TC Track Consensus
LMB Labelled Multi-Bernoulli WGL Weighted Graph Label
MB Multi-Bernoulli WSN Wireless Sensor Networks
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𝝅𝑘+1(𝐗𝑘+1|𝑍1∶𝑘+1) =
𝒈(𝑍𝑘+1|𝐗𝑘+1)𝝅𝑘+1|𝑘(𝐗𝑘+1|𝑍1∶𝑘)

∫ 𝒈(𝑍𝑘+1|𝐗)𝝅𝑘+1|𝑘(𝐗|𝑍1∶𝑘)𝛿𝐗
(3)

where 𝑍1∶𝑘 denotes the history of measurement data from time 1 to
, 𝝅𝑘+1|𝑘(⋅|𝑍1∶𝑘) is a multi-object predicted density, 𝝅𝑘+1(⋅|𝑍1∶𝑘+1) is
 multi-object filtering density, 𝛷𝑘+1|𝑘(⋅|⋅) is a multi-object transition

density, and 𝒈(⋅|⋅) is a multi-object likelihood function. Notably, the
integrals in Eqs. (2)–(3) are FISST integrals expressed as:

∫ 𝑓 (𝐗)𝛿𝐗 =
∞
∑

𝑛=0

1
𝑛!

∑

(𝓁1 ,…,𝓁𝑛)∈L𝑛 ∫X𝑛
𝑓 ({(𝑥1,𝓁1),… , (𝑥𝑛,𝓁𝑛)})𝑑(𝑥1,… , 𝑥𝑛).

(4)

However, in general, the exact computation of the FISST Bayes multi-
bject recursion is intractable, but the LMB density can be efficiently
pproximated via the LMB filtering recursion in (Section III, [31]).

2.3. Clustering algorithms

Clustering involves partitioning a set of objects into groups or
lusters, ensuring each group is comprised of objects with similar
roperties. Given the inherent similarity of this objective to that of the

track-to-track fusion problem, it is intuitively sensible to harness the
capabilities of advances in efficient clustering algorithms to address the
track-to-track association challenge in DMOT.

Clustering algorithms can be broadly categorised into two types:
i) hierarchical, and (ii) partitioning clustering. Hierarchical algorithms
uild a nested hierarchy of clusters, organising data in the form of a
ree. Classical hierarchical clustering algorithms are sensitive to noise
nd outliers and suffer from high computational complexity, limiting
heir application scenario in large-scale data sets [77]. Several hier-

archical techniques have been developed to address these limitations,
for example, CURE [78], ROCK [79] and BIRCH [80]. However, in

MOT context, the hierarchical structure is generally unnecessary for
achieving kinematic and label consensus. In contrast, partitioning clus-
tering algorithms divide the input data into distinct, non-overlapping
subsets or clusters. Although numerous clustering algorithms, such as
𝑘-means [81], EM-clustering [82], DBSCAN [75], and Mean-Shift [83],
have been proposed to cater to various data structures, not all of
them are suitable in a DMOT context. For instance, the 𝑘-means al-
gorithm [81] necessitates prior knowledge of the number of clusters,
 requirement often unmet in sensor networks. In contrast, DBSCAN

and Mean-Shift, are widely used and efficient clustering algorithms
that do not necessitate prior knowledge of the number of clusters.
However, their performance in problems is sensitive to the selection of
a hyper-parameter—kernel bandwidth for Mean-Shift and the radius of
the cluster neighbourhood 𝜖 for DBSCAN [84]. Determining a suitable
yper-parameter depends on the tracking scenario and, in general, is a
on-trivial task [76]. While early attempts are successful in determining

𝜖 in an online manner in a scenario with multiple sensors monitoring
a common area (overlapping FoV) [85], it cannot be directly extended
o general DMOT problems where each sensor node may have distinct,
4 
partially overlapping FoVs. In our work, we investigate a more gen-
eralisable alternative for DMOT problems. We begin with a problem
formulation in the following section, while the subsequent sections
elaborate on our approach.

3. Distributed track-to-track fusion with clustering

We introduce the new track-to-track fusion method to achieve kine-
matic and label consensus across a network of nodes with limited FoV
ensors. In particular, we frame the problem under practical settings of

sensor heterogeneity, unknown FoVs, limited computational capabili-
ties of nodes, and communication bandwidth limits on communication
channels.

We study fusing labelled estimates instead of densities to reduce
he quantity of data shared over bandwidth-limited communication
inks. Importantly, the approach is agnostic to the local sensor modality
nd tracker. We intentionally avoid solving the challenging assignment
roblem, considering the limited processing capability of nodes. In-
tead, we consider modifications to adapt a recent advance in cluster
nalysis to group track estimates for fusion more effectively and ef-
iciently to achieve kinematic consensus. The resulting approach is a
eneralisable cluster analysis method for DMOT problems because our
roposal requires neither prior knowledge of the number of clusters nor
he optimal selection of hyper-parameters.

Importantly, DMOT entails the estimation of multi-object trajecto-
ries, necessitating consistent labels or an SIAP among sensor nodes
to address the label consistency problem. We introduce a new label
algorithm to maintain a record of association history between track
labels from different nodes to ultimately facilitate label consensus.
In particular, the approach offers enhanced robustness against outlier
labels.

We begin with a formal description of the problem (Section 3.1) and
develop the track association method along with the fusion of tracks
for kinematic consensus (Section 3.2), followed by our proposed label
onsensus algorithm in the following sections.

3.1. Problem description

Consider a distributed sensor network, as illustrated in Fig. 1,
characterised by an undirected graph ( ,) where  denotes the set
f network nodes and  ∈  × denotes the set of arcs corresponding
o connections amongst nodes. The network performs the surveillance
ask of observing and tracking an unknown and time-varying number
f mobile objects over time in a large region. Each node is equipped
ith a noisy, limited field-of-view sensor subject to false alarms and

misdetections. Additionally, each node has a local computing unit
for computing local multi-object state estimates. There are no central
fusion nodes in the considered network. Further, each node is assumed
to have a transceiver to send and receive multi-object state estimates, to
and from, other nodes directly or via multi-hop routing, using a typical

ad-hoc network or mesh network.



F. Chen et al.

b

f
i
d
i
k
I
a
(
b

p
d
s
f
r
i

l

c
m



c

i
l

a

l

1

R
𝐱
t
l
e
m

3

(
u
c
m
𝑖
l
w

a

Signal Processing 228 (2025) 109703 
Instead of fusing local multi-object densities as in several RFS-
ased DMOT works [48,86], we propose fusing labelled multi-object

state estimates to achieve consensus among all local nodes in  . In
particular, at time step 𝑘, every local node 𝑛 ∈  transmits a message
(𝑛,𝐗𝑘) comprising both the node’s identity 𝑛 and its local labelled multi-
object state estimate 𝐗𝑘. For brevity, we denote I = L ×  as the
global label space of the sensor network, ensuring that each global
label is unique throughout the entire network, and 𝑁 = | | denotes
the number of nodes. Let 𝐗(𝑛)

𝑘 = {(𝑥, (𝓁, 𝑛)) ∶ (𝑥,𝓁) ∈ 𝐗𝑘} ⊂ X × I
represent the globally labelled multi-object state estimate of node 𝑛
at time 𝑘, derived from the received message (𝑛,𝐗𝑘). Additionally, we
define 𝐋(𝑛)

𝑘 = (𝐗(𝑛)
𝑘 ) = {𝓁(𝑛) ≜ (𝓁, 𝑛) ∶ 𝓁 ∈ (𝐗𝑘)} ⊂ I as the global

labels for estimate 𝐗(𝑛)
𝑘 and 𝑋(𝑛)

𝑘 = (𝐗(𝑛)
𝑘 ) = {(𝐱) ∶ 𝐱 ∈ 𝐗(𝑛)

𝑘 } as the
set of non-labelled states where  ∶ X × I → X is the state extraction
function given by (𝑥,𝓁) = 𝑥. Here 𝓁(𝑛) = (𝑠, 𝛼 , 𝑛) ∈ I is the object
label computed at node 𝑛, containing its birth time 𝑠 ≤ 𝑘, while 𝛼 is
a non-negative integer used to distinguish multiple objects born at the
same time 𝑠. We aim to fuse the local multi-object estimates {𝐗(𝑛)

𝑘 }𝑛∈
from 𝑁 connected nodes to achieve (i) kinematic consensus, and (ii)
label consensus or a SIAP [74] of the global multi-object state estimates
𝐗(global)
𝑘 across all nodes.

3.2. Clustering analysis to find density peaks for kinematic consensus

Solving the track-to-track fusion problem at any node involves
using labelled multi-object state estimates. However, in general, fus-
ng multi-object states among 𝑁 nodes is still burdened by a multi-
imensional assignment problem of 𝑁 dimensions. Recall that solv-
ng the optimal 𝑁-dimensional assignment problem for 𝑁 > 2 is
nown to be NP-hard and, thus, extremely computationally expensive.
n this paper, we propose exploiting the efficiency of the clustering
lgorithm to tackle the difficulty, which leads to a more efficient
sub-optimal) solution to reduce computational and communication
andwidth demands.

We consider the recent clustering by fast search and find of density
peak algorithm (CDP) [84] to analyse the state space of estimates
to ultimately achieve kinematic consensus. The CDP algorithm is a
artitioned clustering method that clusters based on the density of
ata points. Provided that two criteria are met: (i) cluster centres are
urrounded by neighbours with lower local density; (ii) the distance
rom a cluster centre to other points with higher local density is
elatively large, the CDP algorithm has demonstrated good performance
n challenging problems to identify cluster centres compared to other

commonly used clustering algorithms [87]. In DMOT settings, if each
ocal sensor node employs a ‘‘good’’ multi-object tracker (e.g., MHT [6],

GLMB [32], or LMB [31]), it is reasonable to assume that estimates
orresponding to the same object are closely located and therefore
aking CDP algorithm suitable for tracking scenarios.

Specifically, the CDP algorithm performs the following mapping:
∶ 𝐱𝑖 → (𝜌𝑖, 𝛿𝑖), where 𝐱𝑖 ∈ 𝐗(local) and 𝐗(local) = ⊎

𝑛∈
𝐗(𝑛) is the set

of non-fused local state estimates available at a sensor node, ⊎ denotes
the disjoint union of sets. This mapping transforms each input datum
into a new (𝜌, 𝛿) coordinate, where the cluster centres are inherently
distinguished from neighbouring centres. Let 𝑑(𝐱𝑖, 𝐱𝑗 ) be any arbitrary
metric between 𝐱𝑖 and 𝐱𝑗 . Then

𝜌𝑖 =
∑

𝑗
𝜒
(

𝑑(𝐱𝑖, 𝐱𝑗 ) − 𝜉𝑐
)

(5)

𝛿𝑖 = min
𝑗∶𝜌𝑖>𝜌𝑗

𝑑(𝐱𝑖, 𝐱𝑗 ) (6)

where 𝜒(𝑐) = 1 if 𝑐 < 0 and 𝜒(𝑐) = 0 otherwise, and 𝜉𝑐 is the cutoff
distance. Here, 𝜌𝑖 can be regarded as a CDP local density, while 𝛿𝑖 can
be regarded as a CDP density distance.

The cutoff distance 𝜉𝑐 for the CDP algorithm is dynamically chosen
such that the average number of neighbours for each cluster centre
onstitutes approximately 1% to 2% of the total number of points,
 c

5 
as recommended in [84]. The CDP algorithm’s cutoff distance 𝜉𝑐 is
dynamically determined by estimating the density using a Gaussian
kernel [88]. In DMOT settings, local estimates from the same sensor are
guaranteed to originate from different objects. Hence, for any estimates
that originate from the same local sensor, i.e. 𝐱𝑖 ∈ 𝐗(𝐧) and 𝐱𝑗 ∈
𝐗(𝐧), their distance 𝑑(𝐱𝑖, 𝐱𝑗 ) is set to infinity to enforce this constraint.
Once all input data have been transformed, the cluster centres can be
dentified as the points for which its distance value 𝛿 is anomalously
arge, as illustrated in Fig. 2.

The cluster centres are identified by selecting (𝜌, 𝛿) points that
re above density threshold 𝜏𝜌 and distance threshold 𝜏𝛿 through a

manual inspection. Intuitively, the CDP algorithm naturally separates
cluster centres from their neighbours into two clusters in the (𝜌, 𝛿)
coordinate space. Therefore, we propose automating the cluster distil-
ation process using the 𝑘-means clustering algorithm [81] with 𝑘 = 2

to separate cluster centres and their neighbours. This allows us to
adopt the CDP algorithm to analyse the labelled state estimates. Now,
cluster centres are identified as the points with relatively high (𝜌, 𝛿)
values. Subsequently, all remaining points are assigned to their nearest
cluster centre. Algorithm 1 summarises the modified CDP algorithm
for analysing the set of local and shared labelled estimates. Fig. 3(a)
provides an example outcome of an analysis of labelled estimates at
a node with the ModifiedCDP Algorithm to tackle the complexity
of the multi-dimensional assignment problem for achieving kinematic
consensus.

Algorithm 1 ModifiedCDP

1: Input: 𝑿(local) =
[

𝒙(1)
1 ,… ,𝒙(1)

𝑀1
,… ,𝒙(𝑁)

1 ,… ,𝒙(𝑁)
𝑀𝑁

]

2: Output: Cluster Index vector 𝐷
3: 𝐷 ∶= zer os(|𝑿(local)

|)
4: ID ∶= 0
// Cluster analysis of the state space

5: 𝜌 ∶= Compute CDP density of 𝑿(local) using (5)
6: 𝛿 ∶= Compute CDP distance of 𝑿(local) using (6)
7: 𝐶 𝑙 𝑢𝑠𝑡𝑒𝑟𝐶 𝑒𝑛𝑡𝑟𝑒𝑆 𝑒𝑡 ∶= Select high density estimates (𝜌, 𝛿) with 𝑘-means (𝑘=2)
// Assign each cluster centre a unique ID

8: for each 𝒙𝑖 ∈ 𝑿(local) do
9: if 𝒙𝑖 ∈ 𝐶 𝑙 𝑢𝑠𝑡𝑒𝑟𝐶 𝑒𝑛𝑡𝑟𝑒𝑆 𝑒𝑡 then

10: ID ∶= ID +1
11: 𝐷[𝑖] ∶= ID

// Assign estimates to cluster centres using metric 𝑑
12: for each 𝒙𝑖 ∈ 𝑿(local) do
3: if 𝒙𝑖 ∉ 𝐶 𝑙 𝑢𝑠𝑡𝑒𝑟𝐶 𝑒𝑛𝑡𝑟𝑒𝑆 𝑒𝑡 then

14: 𝑗 ∶= ar gmin
𝑘

𝑑(𝒙𝑖,𝒙𝑘) where 𝒙𝑘 ∈ 𝐶 𝑙 𝑢𝑠𝑡𝑒𝑟𝐶 𝑒𝑛𝑡𝑟𝑒𝑆 𝑒𝑡
15: 𝐷[𝑖] ∶= 𝑗

emark 1. The pairwise metric 𝑑(𝐱𝑖, 𝐱𝑗 ) used in (5) and (6) between
𝑖 and 𝐱𝑗 may be represented as a Euclidean distance, utilising solely
he contemporaneous local estimates 𝐱𝑖 and 𝐱𝑗 corresponding to a track
ength of 1. This can be readily extended to incorporate local track
stimates of arbitrary lengths through the employment of the OSPA(2)

etric [89] or alternative track-to-track metrics.

.3. Weighted label graph for global label consensus

MOT concerns both object positions (kinematics) and identities
labels). Although the problem of kinematic consensus is addressed
nder limited FoVs of multiple nodes, the problem of achieving label
onsensus to realise an SIAP across the distributed network [47] re-
ains. In other words, if node 1 assigns the label 𝓁𝑖 to the true object

, then our desire is for all other nodes in the network to assign the
abel 𝓁𝑖 to the true object 𝑖. For a formal definition of label consensus,
e direct the reader to Definition 3 in [47].

Recall that during kinematic consensus, all labelled state estimates
re included in the fused multi-object state estimates; this can in-

lude labelled estimates from clutter. Further, clustering analysis for
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Fig. 1. A distributed heterogeneous sensor network with limited FoVs and bandwidth-
imited communication links.

Fig. 2. CDP algorithm illustration. Different colours denote different clusters of data.
(a) Example set of data points. (b) Data points are converted to (𝜌, 𝛿) coordinates.
Cluster centres can be identified by data with high (𝜌, 𝛿) values (those above the dashed
line in our example).

kinematic consensus may incorrectly associate state estimates from
ifferent objects. Therefore, a carefully designed algorithm is needed to
esolve inconsistencies and achieve label consensus. In this section, we
resent our algorithm formulation for achieving label consensus across
 network of limited FoV sensor nodes.

Since labels are discrete, an undirected graph is a natural repre-
sentation of the association among labels. However, naive use of a
raph-based algorithm can result in incorrect label consensus due to
abels resulting from false-alarm estimates and incorrect associations
rom clustering analysis of labelled estimates at a given node. In this
ork, we propose using a weighted graph to represent the associations
mong local labels derived from the cluster indices 𝐷. Specifically, let
= (𝑉 , 𝐸 , 𝑤) be a graph, where:

• 𝑉 represents the set of vertices of 𝐺, comprising all the local
labels, i.e., 𝑉 = ⊎𝑘

𝑖=1 ⊎
𝑁
𝑛=1 𝑳

(𝑛)
𝑖 , where 𝑳(𝑛)

𝑖 denotes the local labels
of a node 𝑛 at time 𝑖.

• 𝐸 ⊆ {

{𝓁𝑖,𝓁𝑗} ∣ 𝓁𝑖,𝓁𝑗 ∈ 𝑉 and 𝓁𝑖 ≠ 𝓁𝑗
}

constitutes the set of edges
of 𝐺. Each edge 𝑒 = {𝓁𝑖,𝓁𝑗} ∈ 𝐸 signifies that 𝓁𝑖 is associated
with 𝓁𝑗 .

• 𝑤 denotes the edge weight assigned to each edge 𝑒 ∈ 𝐸. Here,
the edge weight represents a distance between two vertices of
label graph 𝐺 to capture the likelihood of two distinct labels
corresponding to the same underlying object; a smaller value
indicates a higher likelihood.

Given the graph representation, our goals are to:

1. Build and maintain the label associations across the network of
nodes from the information of labelled estimates shared across
the network.

2. Employ the historical information in graph 𝐺 to assign global fu-
sion labels to achieve label consensus across the sensor network.

This inevitably requires formulating a graph update method to incor-
porate new information into an existing label graph 𝐺. Our problem
ormulation is based on minimising shared information, thus we are
imited to updating a graph 𝐺 at each local node from information
erived from state estimates. We develop a method to incorporate new
6 
label associations resulting from clustering analysis into the association
history. The graph updating algorithm we developed, UpdateGraph
detailed in Algorithm 2, uses the cluster indices 𝐷 generated by Al-
gorithm 1 and local labels shared by nodes to update the historical
information of label associations.

Algorithm 2 UpdateGraph

1: Input: 𝐺 = (𝑉 , 𝐸 , 𝑤), 𝐷 ,𝑳(local) // Current graph with Vertices, Edges and
weights, clustering indices, local labels of all nodes

2: Output: 𝐺 // the updated graph
3: for each 𝓁 ∈ 𝑳(local) do
4: if 𝓁 ∉ 𝑉 then
5: 𝑉 ∶= 𝑉 ⊎ 𝓁 // add a new label as a vertex
6: for 𝑚 = 1 to max(𝐷) do
7: 𝑳(local)

𝑚 ∶= local labels sets with cluster index 𝑚
// Check all unique pairwise combinations of labels

8: for {𝓁𝑖,𝓁𝑗} ∈ 2(𝑳(local)
𝑚 ) do

9: if {𝓁𝑖,𝓁𝑗} ∉ 𝐸 then
0: 𝐸 ∶= 𝐸 ⊎ {𝓁𝑖,𝓁𝑗} // add {𝓁𝑖,𝓁𝑗} as a new

edge
1: 𝑤({𝓁𝑖,𝓁𝑗}) ∶= 𝑤max // initialise a new edge

weight

2: else
3: 𝑤({𝓁𝑖,𝓁𝑗}) ∶= max(0, 𝑤({𝓁𝑖,𝓁𝑗}) − 1) // update an existing edge

weight
4: 𝐺 ∶= (𝑉 , 𝐸 , 𝑤) // update 𝐺 from updated 𝑉 , 𝐸 , 𝑤
values

Specifically, in UpdateGraph, new labels are added as new vertices
of the graph 𝐺 (lines 3−5). For each cluster index 𝑚 ∈ 𝐷, any two
distinct labels, i.e., 𝓁𝑖,𝓁𝑗 ∈ 𝑳(local)

𝑚 with 𝓁𝑖 ≠ 𝓁𝑗 , an edge 𝑒 = {𝓁𝑖,𝓁𝑗}
with weight 𝑤(𝑒) = 𝑤max is added to 𝐸 if 𝑒 ∉ 𝐸 (see lines 10 − 11).

onversely, if 𝑒 ∈ 𝐸, the weight of this edge 𝑒 is updated as 𝑤(𝑒) =
ax(0, 𝑤(𝑒) − 1) (refer to line 13). The maximising operator ensures that

he weight of each edge remains non-negative.
Fig. 3 provides an example outcome of an analysis of labelled

stimates at a node with the ModifiedCDP Algorithm and the result-
ng label associations from the analysis. Our UpdateGraph Algorithm

utilises the derived associations from this process to update the graph
𝐺 and capture label associations over time.

Once the label graph 𝐺 is updated, we can reassign labels to
urrent fused estimates (kinematic consensus state) to realise global
abel consensus. The representation and update of the weighted label
raph facilitate the formulation of a robust method for global label
onsensus as explained in Section 3.4 and Algorithm 3.

lgorithm 3 DMOTFusion

1: Input: 𝑿(local), 𝐺 // local estimates of all nodes, weighted label graph
2: Output: 𝑿(global), 𝐺 // global consensed labelled multi-object estimates
3: 𝐷 ∶= ModifiedCDP(𝑿(local)) // Clustering to find common estimates
4: 𝑳(local) ∶= (𝑿(local));𝑋(local) ∶= (𝑿(local)); // extract local labels and local
kinematic estimates

5: 𝐺 ∶= UpdateGraph(𝐺 , 𝐷 ,𝑳(local)); // update graph with the new clustering
indices

6: 𝑿(global) ∶= ∅ // initialise the global estimates
7: for 𝑚 = 1 to max(𝐷) do

//Kinematic consensus
8: Compute 𝑥(global)

𝑚 via 𝑋(local)
𝑚 using (7)

//Global label consensus
9: 𝓁𝑚,min ∶= min(𝑳(local)

𝑚 ) // select the smallest label via lexicographical order
10: 𝑳𝐺 ∶= nearest(𝐺 ,𝓁𝑚,min) // extract all the nearest labels of 𝓁𝑚,min from

graph 𝐺
11: 𝓁(global)

𝑚 ∶= min(𝑳𝐺) // select the smallest label via lexicographical
order
//Consensed globally labelled state estimates or tracks

2: 𝑿(global) ∶= 𝑿(global) ⊎
(

𝑥(global)
𝑚 ,𝓁(global)

𝑚
)
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Fig. 3. An example illustrating the analysis of labelled estimates with the ModifiedCDP Algorithm, resulting in label associations from the cluster analysis and the derivation of
the kinematic consensus state. (a) Consider ten 2D spatial locations of labelled local estimates from three sensor nodes: 𝑿(local) = [𝒙(1)

1 ,𝒙(1)
2 ,𝒙(1)

3 ,𝒙(2)
1 ,𝒙(2)

2 ,𝒙(2)
3 ,𝒙(2)

4 ,𝒙(3)
1 ,𝒙(3)

2 ,𝒙(3)
3 ]. After

applying the ModifiedCDP Algorithm, 6 cluster centres are identified. Now, the resulting clustering index vector for the input 𝑿(local) is 𝐷 = [5, 2, 1, 3, 2, 5, 4, 6, 2, 3]. This vector
signifies that 𝒙(1)

1 is associated with 𝒙(2)
3 (clustering index 5), 𝒙(1)

2 is associated with both 𝒙(2)
2 and 𝒙(3)

2 (clustering index 2), 𝒙(2)
1 is associated with 𝒙(3)

3 (clustering index 3), whilst
the remaining local estimates are not associated with any others. (b) Illustrates the label associations between local estimates based on the clustering indices 𝐷 obtained from the
ModifiedCDP Algorithm. This information is used to update the weighted graph to achieve global label consensus.
Fig. 4. An overview of the proposed CDP-WGL algorithm for Distributed MOT (DMOT). Each Sensor Node tracks objects within its sensor’s FoV using a local MOT Filter and
shares the local labelled estimates 𝐗(𝑛) via a communication network with other nodes. Global fused, labelled estimates 𝐗(global) or tracks are computed at each sensor node using
the local and shared information using DMOTFusion described in Algorithm 3 where: (i) Kinematic Consensus is supported by the proposed CDP cluster analysis based algorithm,
ModifiedCDP, described in Algorithm 1; and (ii) Global Label Consensus is supported by the weighted graph labelling method using UpdateGraph described in Algorithm 2.
3.4. DMOT fusion

Our complete distributed fusion algorithm DMOTFusion is sum-
marised in Algorithm 3, and we provide an overview illustration of
the proposed CDP-WGL algorithm for DMOT in Fig. 4. Local sensor
labelled estimates 𝐗(local) are first clustered via the CDP clustering
algorithm (line 3), and the label graph 𝐺 is updated according to the
clustering result (line 5). Kinematic consensus is reached by fusing all
local estimates that belong to the same cluster (in line 8), and label
consensus is achieved by assigning labels to fused estimates via the
7 
updated graph 𝐺 (in lines 9−11). We describe: (i) the kinematic; and
(ii) global label consensus methods, in detail, next.

In the absence of prior knowledge about local sensor capabilities,
for kinematic consensus, the arithmetic average is given by:

𝑥(global)
𝑚 =

[

∑

𝑥∈𝑋(local)
𝑚

𝑥
]

∕|𝑋(local)
𝑚 |, (7)

where 𝑋(local)
𝑚 is a set of local state estimates from 𝑋(local) with the same

clustering index 𝑚, can be employed to fuse the estimates. For example,
Fig. 3(a) illustrates a scenario in which our proposed cluster analysis
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Table 3
Time complexity of algorithms for solving the multi-dimensional assignment problem.

Algorithm TC-OSPA(2) [47] DBSCAN Mean-Shift CDP

Average time complexity (| ||𝐓max|
4) (| ||𝐓max| log(|𝐓max|)) (| ||𝐓max|

2) (| ||𝐓max|
2)

Worst case time complexity (| ||𝐓max|
4) (| ||𝐓max|

2) (| ||𝐓max|
2) (| ||𝐓max|

2)
f

r
b
u
T
n
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c

l

l
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(

with the ModifiedCDP Algorithm generates a proposal for associations
etween kinematic states. Here, the kinematic consensus state (fused
lobal estimates) for the illustrated example can be computed by (7) to
ield 𝑋(global) = [𝑥(1)3 , 𝑥(global)

2 , 𝑥(global)
3 , 𝑥(2)4 , 𝑥(global)

5 , 𝑥(3)1 ].

Remark 2. Our approach is independent of the multi-object tracking
echniques employed at a local node. In particular, we do not assume

that the nodes share covariances along with the estimates. This is
purposefully chosen to minimise bandwidth requirements on commu-
ication channels to suit practical settings. However, suppose the local

tracking algorithm provides covariances. In that case, it is possible to
use the means and covariances by, for example: (i) employing Maha-
anobis distance between two Gaussian distributions for the distance
etric 𝑑 in (6); and (ii) computing the fused estimate in (7) and its

ovariance employing an approach such as the GCI for multiple sensors
r the optimal fusion method for two-sensors [90].

To derive the unique identity of consensus kinematic estimates and
chieve global label consensus, given an updated graph 𝐺 generated
rom DMOTFusion, for each clustered index 𝑚 ∈ 𝐷, the smallest label
𝓁𝑚,min = min(𝑳(local)

𝑚 ) in graph 𝐺 is chosen through a lexicographical
order based on its birth time and node identity, i.e.:

𝓁𝑖 = (𝑠𝑖, 𝛼𝑖, 𝑛𝑖) < 𝓁𝑗 = (𝑠𝑗 , 𝛼𝑗 , 𝑛𝑗 ) ⇔ 𝑠𝑖 < 𝑠𝑗 or (𝑠𝑖 = 𝑠𝑗 and 𝑛𝑖 < 𝑛𝑗 ). (8)

Subsequently, from the smallest local label 𝓁𝑚,min, we find the set of
abel vertices that has a distance of 0, i.e. 𝐋𝐺 = {𝓁′

𝑚 ∈ 𝑉 |𝑑𝐺(𝓁𝑚,min,𝓁′
𝑚) =

0}, where 𝑑𝐺(𝑣, 𝑢) is the distance between vertex 𝑣 and 𝑢 in graph 𝐺.
The global label 𝓁(global)

𝑚 is then selected as the smallest value from the
set 𝐋𝐺.

The basis for the consensus formulation is built on the key concept
that: (i) the label graph represents the history of all previous label
associations; and then (ii) by assigning the smallest label (equivalent
to the earliest object appearance) as the global consensus label to an
object, prevents a larger label (later appearance) from being assigned
to the same object and thus reduces label inconsistency.

Importantly, compared with the unweighted graph label consensus
lgorithm in [47], the formulation of weights serves to confirm a label

association and reject spurious track labels resulting from false tracks
or incorrect clustering results. Consequently, the proposed formulation
is expected to improve track label consistency. For example, without
the introduction of weights, it is possible for a clustering analysis error
o cause label switching since the global consensus label is chosen
o be the smallest label in lexicographic order. Fig. 5 illustrates the

problem in a simple scenario in which our proposed weighted graph-
based approach achieves label consensus across the sensor network
in contrast to an unweighted graph formulation. Effectively, the edge
weight serves to provide the evidence to support the label association
and reject a spurious clustering result.

3.5. Time complexity and bandwidth comparison

The key advantages of our proposed approach for distributed MOT
re low computational complexity and low bandwidth requirements.

In this section, we analyse and compare the computational complexity
and bandwidth demands of our method alongside other alternatives for
DMOT.

Table 3 summarises the average and worst-case time complexities
f the clustering-based analysis method and TC-OSPA(2) [47] algo-
ithms. Compared to the former DMOT algorithm, employing pair-wise
8 
Table 4
Bandwidth requirement comparison of different information sharing strategies for
usion. Here, 𝑛𝑙 and 𝑛𝑑 are the track label dimension and kinematic state dimension,

respectively, 𝜇 is the ratio between the number of Bernoulli components and confirmed
objects in an LMB density.

Method Bandwidth (bytes)

Labelled estimates 8 ⋅ (𝑛𝑙 + 𝑛𝑑 )| ||𝐓max|

Labelled estimates & Covariance 8 ⋅ (𝑛𝑙 + 𝑛𝑑 + 𝑛𝑑 (𝑛𝑑+1)
2

)| ||𝐓max|

LMB density 8 ⋅ [1 + 𝑛𝑙 + 𝑛𝑑 + 𝑛𝑑 (𝑛𝑑+1)
2

]| ||𝐓max|𝜇

assignment, the cluster analysis algorithms (our proposed method, CDP-
based, and DBSCAN-based, used for comparison) are significantly less
computationally demanding than the TC-OSPA(2) algorithm.

We consider the bandwidth requirements for labelled estimate fu-
sion, labelled estimate & covariance fusion, and full LMB density fusion
methods in a sensor network with | | sensor nodes and |𝐓max| objects.
The results of the analysis are summarised in Table 4.

The dimensions of each state estimate and label are 𝑛𝑑 and 𝑛𝑙,
espectively. Each dimension is presumed to be represented by an 8-
yte floating-point value. In density fusion, each LMB density can be
niquely defined by its labelled Bernoulli components {𝑟(𝓁), 𝑝(⋅,𝓁)}𝓁∈L.
he number of labelled Bernoulli components typically exceeds the
umber of objects |𝐓max| and therefore the exact number of objects in
 full LMB density is represented by |𝐓max| ⋅ 𝜇 where 𝜇 ≥ 1.

Labelled estimates fusion is the most bandwidth-efficient method,
nly requiring each local sensor to share its estimates within the
etwork. To enhance tracking accuracy, the covariance of each track
an also be shared across the network, leading to additional band-

width requirements. As expected, sharing the full multi-object density
demands significantly high bandwidth; depending on the number of
objects and sensors, the bandwidth demands can be prohibitively high
for practical applications [47].

4. Numerical experiments

In this section, we carry out a series of experiments using: (i) simu-
ated data (Section 4.1); and (ii) real-world trajectory data (Section 4.2)

to assess the performance of our proposed DMOT strategies under
networks of heterogeneous sensors where all local nodes operate using
labelled filters.

We compare the proposed clustering-based multi-object tracking
algorithm under limited FoV sensors with weighted graph labelling
method using both our proposed cluster analysis with CDP together
with DBSCAN and Mean-Shift as alternative cluster analysis base-
ines as CDP-WGL, DBSCAN-WGL and MeanShift-WGL, respectively.
hen we also ablate our WGL method to illustrate its effectiveness

and provide baselines with the three cluster analysis methods with-
out the WGL method as CDP-Unweighted, DBSCAN-Unweighted and
MeanShift-WGL.

Notably, TC-OSPA(2) represents the current state-of-the-art DMOT
algorithm capable of addressing limited FoV sensors in labelled trackers
by performing a sequential pairwise matching between local estimates
for track-to-track fusion. Therefore, we also compare with TC-OSPA(2)

in [47]. Additionally, we implement the centralised multi-sensor LMB
MS-LMB) [91] to show the estimation error in an ideal case where all

sensors’ FoVs are known. We describe the experimental settings and
performance evaluation measures we employed below.

Experimental Settings. We employ an LMB filter with a Gaussian mix-
ture implementation at each local sensor node. Gibbs sampling [92],



F. Chen et al. Signal Processing 228 (2025) 109703 
Fig. 5. A simple illustration of the weighted graph label consensus method compared to the unweighted method in the presence of an incorrect label association assertion resulting
from the clustering analysis. (a) Object 1 and Object 2 enter the common FoV of sensor node 1 and node 2. The label graph shows the correct label association between each
sensor node’s labels. (b) A clustering error occurs when object 1 crosses Object 2 at a similar space–time dimension and leads to grouping local estimates of Object 1 and 2 from
nodes 1 and 2 into a single cluster. (c) Result of unweighted graph label consensus method. After the label graph update, new edges {𝓁(1)

1 ,𝓁(2)
2 } and {𝓁(1)

2 ,𝓁(2)
1 } are added as a

result of the clustering error. The smallest label 𝓁(1)
1 in terms of lexicographic order is then permanently associated with Object 2 and causes a label switch while object 1’s label

is not affected. (d) Effect of weighted graph label consensus method. After the graph update, the same edges are added with an initial weight of 5 while all other edges’ weights
remain at 0 (due to the graph update prior to the cluster error). The edge weight provides evidence to support a label association, effectively isolating Object 1 and 2’s label
graphs and preventing a label switch for Object 2.
an efficient variant of the Metropolis–Hastings algorithm, is utilised
for the joint prediction and update step to sample multiple associ-
ation hypotheses efficiently. This approach balances computational
efficiency and accuracy in handling complex MOT scenarios. Alterna-
tively, Murty’s algorithm [33] can be employed for the deterministic
computation of multiple association hypotheses. However, this method
is significantly slower than Gibbs sampling, particularly in scenarios
with a large number of objects or measurements. The maximum num-
ber of hypotheses retained for each LMB filter is 1000, and the existence
pruning threshold is fixed at 10−5. An object is confirmed when its
existence exceeds 0.5. As the initial locations of the objects are un-
known, we apply the adaptive birth procedure for the LMB filter [31].
Although our proposed CDP analysis for tracking problems has the
benefit of avoiding parameter tuning, DBSCAN requires determining
appropriate settings. The minimum number of points required to form
a dense region, 𝑚𝑖𝑛𝑃 𝑡𝑠 is set to 1 for the DBSCAN algorithm with the
neighbourhood radius 𝜖 = 30 m and 𝜖 = 250 m set for the simulated
trajectory experiments (Section 4.1) and real-world trajectory experi-
ments (Section 4.2), respectively, for optimal clustering performance.
Gaussian kernel bandwidth of 50 m is used for the Mean-Shift algorithm
for all scenarios.

Performance Evaluation. We evaluate the tracking performance using
the following metrics: (i) Optimal Sub-Pattern Assignment (OSPA) [93],
(ii) OSPA-on-OSPA (OSPA(2)) [89] with cut-off 𝑐 = 100 m, parameter
𝑝 = 1, and window length 10, and (iii) the averaged fusing time of
each measurement time step for the considered fusion algorithms. In
particular, OSPA considers not only localisation error but also cardi-
nality (i.e., number of objects) error, while OSPA(2) takes into account
localisation, cardinality, track fragmentation, and track label switching
errors. A smaller metric value indicates better tracking performance.
We refer to [89] and the references therein for detailed computations of
these metrics. The reported results are averaged over 100 Monte Carlo
(MC) runs.

4.1. Heterogeneous sensor network

In this scenario, we consider the problem of using an intercon-
nected network of 100 heterogeneous sensors, which consists of 50
2D-radar sensors and 50 position sensors (such as cameras) in an area
of [−1000, 1000] m × [−1000, 1000] m, to track an unknown number
of objects. With this sensor network, two scenarios are constructed
with 35 and 50 mobile objects, respectively. The ground truth and
9 
positions of sensors are shown in Fig. 6. In particular, all radar sensors
have a maximum detection range of 150 m and detection probability of
𝑃 (radar)
𝐷 = 0.98 and clutter rate 𝜆(radar)

𝑐 = 0.1, while all position sensors
have a maximum detection range of 300 m, detection probability of
𝑃 (pos)
𝐷 = 0.7, and clutter rate 𝜆(pos)

𝑐 = 1. The total simulation duration is
75 time steps.

Object dynamic model. Each object follows a constant velocity (CV)
motion model, given by

𝑥𝑘 = 𝐹𝐶 𝑉 𝑥𝑘−1 + 𝑞𝐶 𝑉𝑘−1. (9)

where 𝑥𝑘 is the object state at time 𝑘 with

𝑥 = [x, ẋ, y, ẏ ]𝑇 ,

comprising of its position [x, y ]𝑇 and velocity [ẋ, ẏ ]𝑇 in the 2D Cartesian
coordinate system. Here, 𝐹𝐶 𝑉 = [1, 𝑇0; 0, 𝑇0]⊗ 𝐼2 where 𝑇0 = 1 s is the
measurement sampling interval, ⊗ denotes Kronecker tensor product,
and 𝐼2 denotes a 2 × 2 identity matrix, and 𝑞𝐶 𝑉 is a 4 × 1 zero
mean Gaussian process noise, i.e., 𝑞𝐶 𝑉 ∼  (04×1, 𝛴𝐶 𝑉 ), with 𝛴𝐶 𝑉 =
𝜎2𝐶 𝑉 [𝑇 3

0 ∕3, 𝑇 2
0 ∕2; 𝑇

2
0 ∕2, 𝑇0]⊗ 𝐼2 and 𝜎𝐶 𝑉 = 5 m∕s2.

Measurement Model. The measurement functions for the 2D-radar
sensor and 2D-position sensor are as follows:

(i) 2D radar sensor. Each detected object 𝑥 yields a 2D radar mea-
surement, consisting of range, range rate, and azimuth, i.e.

𝑧𝑘 = ℎ(radar)(𝑥𝑘) + 𝜂(radar)
𝑘 , (10)

where

ℎ(radar)(𝑥) =
⎡

⎢

⎢

⎢

⎣

√

x2 + y2
(

xẋ + yẏ)∕
√

x2 + y2
at an2(y ∕x)

⎤

⎥

⎥

⎥

⎦

(11)

and 𝜂(radar)
𝑘 is a 3 × 1 zero mean Gaussian measurement noise, i.e.,

𝜂(radar)
𝑘 ∼  (03×1, 𝜎(radar)

𝜂 𝜎(radar)
𝜂

𝑇
), with 𝜎(radar)

𝜂 = [10 m, 2 m/s,
𝜋∕180 rad]𝑇 .

(ii) 2D position sensor. Each detected object 𝑥 yields a 2D position
measurement, consisting of 𝑥-coordinate and 𝑦-coordinate, i.e.

𝑧𝑘 = ℎ(pos)(𝑥𝑘) + 𝜂(pos)
𝑘 , (12)

where
ℎ(pos)(𝑥) = [x, y ]𝑇 (13)
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Fig. 6. Heterogeneous sensors scenario: 100 sensor nodes tracking (a) 35 mobile objects; (b) 50 mobile objects. Starting and stopping positions are denoted by # and 2.
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and 𝜂(pos)
𝑘 is a 2 × 1 zero mean Gaussian measurement noise, i.e.,

𝜂(pos)
𝑘 ∼  (02×1, 𝜎2𝜂

(pos)𝐼2), with 𝜎(pos)
𝜂 = 10 m.

Experiments and Results. In the following, we employ the experi-
mental scenario and settings in this section for several investigations
described below.

(i) Evaluate and compare the tracking performance of the proposed
DMOT method.

(ii) Compare the computational cost of the fusion methods.
(iii) Demonstrate the scalability of the proposed approach with re-

spect to an increasing number of sensors.
(iv) Demonstrate the impact of parameter selection on tracking per-

formance when employing DBSCAN or Mean-Shift clustering
compared to the proposed CDP-based analysis.

Tracking Performance. Fig. 7 depicts the labelled multi-object state
stimates at node 1 for TC-OSPA(2), DBSCAN-WGL, MeanShift-WGL and
DP-WGL fusion methods, respectively, obtained from one MC simu-

ation execution. Visually, all three methods are able to successfully
stimate the positions of all objects but with varying degrees of label
onsistency as discussed in the overall results below.

Fig. 8 and Table 5 present detailed tracking performance compar-
sons across all MC executions. As seen in Fig. 8, all clustering-based

methods have better estimation accuracy than the TC-OSPA(2) method
at time points where the cardinality increases (for example, at approx-
imately 15 s, 30 s and 50 s as shown in the cardinality plot) indicated
by their lower OSPA distance measures; but performance improves to
be similar to the proposed CDP-WGL method at later points in time.
Clustering approaches are observed to be more effective at these time
instances because the TC-OSPA(2) method can only fuse local tracks
with a minimum length of 2, which reduces responsiveness during
object births. Consequently, in the summary results in Table 5, cluster
nalysis methods are seen to perform better than TC-OSPA(2) in the
SPA metric.

Then, as seen in Fig. 8, CDP-WGL is seen to have more accurate car-
dinality estimates while DBSCAN-WGL overestimates and MeanShift-
WGL underestimates the number of objects. These results demonstrate
the advantages of the CDP-based analysis algorithm. Even though the
cardinality estimates for TC-OSPA(2) are observed to lag those of our
proposed CDP-WGL method as seen Fig. 8, due to the delay in object
confirmations in TC-OSPA(2) method, over time these estimates become
accurate.

In terms of tracking performance, the overall results in Table 5
as well as the detailed results in Fig. 8 show our CDP-WGL to attain
he lowest OSPA(2) distance value. This result can be attributed to
10 
Table 5
Heterogeneous sensors scenario. The results reported are obtained from over 100 Monte
Carlo executions for each method. Bold text indicates the best result.

Heterogeneous sensors: 35 Objects

Method OSPA (m) OSPA(2) Dist (m) Fusing time (ms) Speed up

TC-OSPA(2) 21.81 49.50 626.35 ×1
DBSCAN-Unweighted 20.85 53.14 185.84 ×3.37
DBSCAN-WGL 20.86 50.98 169.64 ×3.69
MeanShift-Unweighted 20.80 52.02 196.70 ×3.18
MeanShift-WGL 20.78 50.23 201.08 ×3.11
CDP-Unweighted 18.96 50.59 185.10 ×3.38
CDP-WGL 18.86 46.03 179.15 ×3.49

MS-LMB (Centralised
baseline)

16.46 26.47 NA NA

Heterogeneous sensors: 50 Objects

TC-OSPA(2) 20.66 49.76 1060.42 ×1
DBSCAN-Unweighted 21.47 54.51 255.15 ×4.16
DBSCAN-WGL 21.46 53.63 245.03 ×4.33
MeanShift-Unweighted 20.32 50.90 288.25 ×3.68
MeanShift-WGL 20.19 49.18 279.62 ×3.79
CDP-Unweighted 18.69 50.57 267.74 ×3.96
CDP-WGL 18.65 47.95 263.64 ×4.02

MS-LMB (Centralised
baseline)

20.85 31.30 NA NA

the higher estimation accuracy of our CDP-based kinematic consensus
algorithm and lower track label switching (label consistency) of the

eighted graph label consensus algorithm. Importantly, a noticeable
decrease in OSPA(2) can be observed when comparing each clustering-
based method with their respective counterparts using the unweighted
abel consensus algorithm—DBSCAN-Unweighted,

MeanShift-Unweighted and CDP-Unweighted. This result demonstrates
the lower track label switching (or higher label consistency) achieved
with our proposed weighted graph label consensus algorithm.
Computational Costs. A key motivation for our formulation is to ad-
dress the computational complexity posed by the difficult and complex
labelled density fusion problem faced in DMOT. The fusing time (and
speed up) results in Fig. 8 and Table 5 demonstrate TC-OSPA(2) method
o demand substantial time for computing fusion results—globally con-

sistent tracks. In contrast, the clustering-based methods use, on average,
only 27% of the fusing time required by TC-OSPA(2). This highlights
he efficiency gains of our proposed clustering-based approaches in
itigating the complexity of the multi-dimensional assignment problem
e discussed in Section 1 whilst achieving similar or better tracking

performance compared to TC-OSPA(2) as summarised in Table 5.
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Fig. 7. Heterogeneous sensors scenario: an instance of estimated trajectories using TC-OSPA(2), DBSCAN-WGL, MeanShift-WGL and CDP-WGL algorithms with LMB filter when
tracking objects at each sensor node (a) with 35 mobile objects; (b) with 50 mobile objects.

Fig. 8. Heterogeneous sensors scenario: average OSPA, OSPA(2) Distance, Cardinality and fusing time over 100 MC runs using LMB filter when tracking (a) 35 mobile objects; (b)
50 mobile objects.

Fig. 9. Heterogeneous sensors scenario (35 objects): tracking performance at one sensor node over 100 MC runs when the number of connected sensor nodes increases from 1 to
100.
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Fig. 10. Heterogeneous sensors scenario comparing parameter selection sensitivity of DBSCAN-WGL and MeanShift-WGL on tracking performance and fusing time with parameter-less
CDP-WGL method. Results are at one sensor node over 100 MC runs when the DBSCAN-WGL method’s parameter 𝜖 and MeanShift-WGL method’s bandwidth are increased.
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Scalability. An important facet of a distributed algorithm is the ability
to scale to larger problem dimensions without significant increases in
omputational costs. Fig. 9 depicts the overall tracking performance

of TC-OSPA(2), DBSCAN-WGL, MeanShift-WGL and CDP-WGL at one
sensor node as the number of interconnected sensor nodes is increased
from 3 to 100. The results validate the scalability of our proposed
fusion strategy, wherein the fusion time increases linearly with respect
to the number of connected sensor nodes. Additionally, the clustering
methods require lower fusing times than TC-OSPA(2) in all settings due
to their lower computational complexity. Notably, as expected, when
the number of nodes increase, the OSPA and OSPA(2) errors decrease
since the nodes can benefit from shared local labelled multi-object state
estimates of other nodes to complement their own limited FoVs, thereby
improving coverage area and tracking accuracy.
Hyper Parameter Sensitivity. Fig. 10 shows the tracking performance at
one sensor node over 100 MC runs as the 𝜖 parameter for DBSCAN-WGL
and the bandwidth for MeanShift-WGL is changed from 2.5 m to 500 m,
ompared against our proposed CDP-WGL method. The DBSCAN-WGL
nd MeanShift-WGL’s tracking performance is sensitive to the selec-
ion of 𝜖 and bandwidth, respectively. Consequently, inappropriately
hosen parameters can significantly degrade the performance of these
ethods. By comparison, our proposed CDP-WGL method is not encum-

ered by parameter selection and is able to outperform DBSCAN-WGL
nd MeanShift-WGL methods even under optimal value settings for
/bandwidth for the two methods. The results further highlight the
dvantages of the CDP-WGL method in terms of robustness and ease of
eployment. In terms of fusing time, the DBSCAN-WGL method is only
lightly faster than the CDP-WGL in the best-case scenario. Considering
he respective computation complexity of the two clustering algorithms
s shown in Table 3, the difference is most likely due to implementation

differences and/or the lower average time complexity of the DBSCAN
algorithm. Comparatively, the MeanShift-WGL algorithm suffers the
most from incorrect bandwidth selection. When a large bandwidth is
used, the MeanShift-WGL algorithm groups more local estimates into
the same cluster, which increases the number of network edges in
the weighted label graph, i.e. generating increased numbers of label
associations. Consequently, increasing the amount of time spent on
updating the graph relative to the other clustering algorithms.

4.2. Taxi tracking

In this scenario, we evaluate the performance of our proposed
istributed algorithm under real-world trajectory settings using the
RAWDAD taxi dataset [94] and the Porto taxi dataset [95]. The

CRAWDAD taxi data set contains taxi trajectories in the San Francisco
Bay Area, USA and the Porto taxi dataset consists of taxi trajectories
in Porto, Portugal, released in the ECML/PKDD 2015 challenge com-
petition. We selected 20 taxi tracks from each dataset and followed a
similar approach to [96] to speed up the time duration of the ground
ruth by a factor of 10.

The simulated environment using the CRAWDAD dataset has an
area of 7000 m × 10 000 m and uses a total tracking period of 120 s with 40
12 
limited FoV sensor nodes placed uniformly in the area with a maximum
detection range of 1300 m, a detection probability 𝑃𝐷 = 0.9 and a
clutter rate 𝜆𝑐 = 10. The simulated environment using the Porto taxi
dataset has an area of 8000 m × 6000 m and uses a total tracking period
time of 115 s with 48 limited FoV sensor nodes placed uniformly in the
area with a maximum detection range of 900 m, a detection probability
𝑃𝐷 = 0.9 and a clutter rate 𝜆𝑐 = 10. The ground truth tracks and the
positions of sensor nodes of both scenarios are shown in Fig. 11. All
ensor nodes are assumed to be network-connected in both scenarios.

Object Dynamic Model. To approximate the behaviour of taxis’, we
employ the constant turn (CT) model with an unknown turn rate as
the dynamic model. This model is defined as follows:
𝑥𝑘 = 𝐹𝐶 𝑇 (𝜃𝑘)𝑥𝑘−1 + 𝐺𝐶 𝑇𝜔𝑘

𝜃𝑘 = 𝜃𝑘−1 + 𝑇0𝑞𝑘,
(14)

where 𝑥𝑘 is the object state at time 𝑘 with 𝑥 = [x, ẋ, y, ẏ, 𝜃], consisting of
its 2D position, velocity and turning rate, 𝑇0 = 1 s, 𝜔𝑘 ∼  (04×1, 𝜎2𝜔𝐼2)

ith 𝜎𝜔 = 5 m∕s2, 𝑞𝑘 ∼  (0, 𝜎2𝑞 ), and 𝜎𝑞 = (𝜋∕60) r ad∕s2,

𝐹𝐶 𝑇 (𝜃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 sin(𝜃 𝑇0)
𝜃 0 − 1−cos(𝜃 𝑇0)

𝜃

0 cos(𝜃 𝑇0) 0 − sin(𝜃 𝑇0)
0 1−cos(𝜃 𝑇0)

𝜃 1 sin(𝜃 𝑇0)
𝜃

0 sin(𝜃 𝑇0) 0 cos(𝜃 𝑇0)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐺𝐶 𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑇 2
0
2 0

𝑇0 0

0
𝑇 2
0
2

0 𝑇 2
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

Measurement Model. Each local node comprises a 2D-position sensor
ith its measurement function specified in (13) with measurement
oise 𝜎(pos)

𝜂 = 10 m.

Experiments and Results. In the following, we employ the real-world
trajectory dataset for two investigations described below.

(i) Evaluate and compare the tracking performance of the proposed
DMOT method and demonstrate the generalisation of the method.

(ii) Investigate the effectiveness of the proposed global label consen-
sus algorithm based on the WGL method.

Tracking Performance (Results Generalisation). For illustration, Figs. 12
and 13 depict the labelled multi-object state estimates at node 1 for TC-

SPA(2), DBSCAN-WGL, MeanShift-WGL and CDP-WGL fusion meth-
ds, respectively, for a single tracking experiment result. All three
ethods successfully estimate the taxi’s positions with varying degrees

of label consistency discussed further in the detailed results.
Fig. 14 and Table 6 present detailed performance comparisons

across all MC executions of both taxi tracking scenarios. Overall, de-
spite the challenging dynamic behaviour of taxis, our CDP-WGL al-
gorithms perform better than TC-OSPA(2) and the alternative cluster
nalysis methods DBSCAN-WGL and MeanShift-WGL methods in terms

of estimation and tracking accuracy as shown in the OSPA and OSPA(2)

results, respectively, in Table 6. In sympathy with results observed in
Section 4.1, the combination of cluster analysis with WGL can improve
tracking performance—achieve a lower OSPA(2)—through better global
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Fig. 11. (a) San Francisco taxi tracking scenario: the ground truth trajectories of 20 Taxis tracked by 40 sensor nodes. (b) Porto taxi scenario: the ground truth trajectories of 20
Taxis tracked by 48 sensor nodes. Starting and stopping positions are denoted by # and 2.
Fig. 12. San Francisco taxi tracking scenario: an instance of estimated trajectories using TC-OSPA(2), DBSCAN-WGL, MeanShift-WGL and CDP-WGL algorithms with LMB filter.
Fig. 13. Porto taxi tracking scenario: an instance of estimated trajectories using TC-OSPA(2), DBSCAN-WGL, MeanShift-WGL and CDP-WGL algorithms with LMB filter.
label consistency. These results confirm the robustness of the proposed
WGL method and our DMOT algorithm-CDP-WGL. Importantly, the
results confirm the capacity to rely on the CPD-based clustering analysis
approach, without the need for hyper-parameter determination, to
more consistently resolve the multi-dimensional assignment problem
across different scenarios.

As observed before, in Section 4.1, CDP-WGL’s cardinality estimates
shown in Fig. 14 are significantly more stable and accurate than the
DBSCAN-WGL and MeanShift-WGL methods, while DBSCAN-WGL and
MeanShift-WGL based analysis leads to overestimation of the cardi-
nality. Additionally, based on the fusing time results, we can observe
the clustering-based methods to consistently require less than 28%
13 
of the fusing time compared to TC-OSPA(2), confirming the expected
efficiency gains of our proposed method.
Effectiveness of the Proposed Label Consensus Method. Investigation in
Sections 4.1 and 4.2 demonstrated the impact of the WGL method
to improve global label consistency across a distributed network of
sensor nodes. Fig. 15 depicts the tracking performance at one sensor
node in the San Francisco taxi tracking scenario as the parameter 𝑤𝑚𝑎𝑥
in the weighted graph label consensus method is increased from 0
(equivalent to the unweighted graph label consensus method in [47]) to
8. Consistent with our previous results, the weighted graph-based label
consensus algorithm is observed to have significantly lower OSPA(2)

values for graph weight 𝑤 > 0—i.e. compared to the unweighted
𝑚𝑎𝑥
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Fig. 14. Averaged OSPA, OSPA(2) Distance, Cardinality and fusing time over 100 MC runs where each node employs an LMB filter for (a) San Francisco taxi tracking scenario;
b) Porto taxi tracking scenario.
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Table 6
San Francisco and Porto taxi tracking scenario result. The results reported are obtained
from 100 Monte Carlo trials for each method. Bold text indicates the best result.

San Francisco taxi tracking scenario

Method OSPA (m) OSPA(2) Dist (m) Fusing time (ms) Speed up

TC-OSPA(2) 29.72 50.28 180.13 ×1
DBSCAN-Unweighted 29.12 55.74 51.64 ×3.49
DBSCAN-WGL 29.29 52.53 37.59 ×4.79
MeanShift-Unweighted 29.21 60.43 41.45 ×4.35
MeanShift-WGL 29.28 56.61 39.53 ×4.56
CDP-Unweighted 28.71 53.64 49.18 ×3.66
CDP-WGL 28.66 49.88 43.65 ×4.13

MS-LMB (Centralised
baseline)

22.90 29.77 NA NA

Porto taxi tracking scenario

TC-OSPA(2) 29.80 46.19 150.78 ×1
DBSCAN-Unweighted 28.38 50.69 31.12 ×4.85
DBSCAN-WGL 28.29 48.62 29.92 ×5.04
MeanShift-Unweighted 28.43 56.47 32.13 ×4.69
MeanShift-WGL 28.41 54.67 30.70 ×4.91
CDP-Unweighted 28.19 47.63 33.22 ×4.54
CDP-WGL 28.27 45.32 32.73 ×4.61

MS-LMB (Centralised
baseline)

29.94 36.76 NA NA

Fig. 15. San Francisco taxi tracking scenario: OSPA(2) Distance results with our
roposed CDP-WGL method employing different graph weights 𝑤𝑚𝑎𝑥 obtained from 100
C runs. The Unweighted Graph (𝑤𝑚𝑎𝑥 = 0) corresponds to the label consensus method

n [47].
14 
graph method. Further, performance is robust to variation in 𝑤𝑚𝑎𝑥 ≥ 3.
his demonstrates the effectiveness of the weighted graph method in

reducing label inconsistency and the resulting improvements in OSPA(2)

alues.
Summary. Overall, the results further demonstrate the performance
advantage of CDP-WGL in a realistic DMOT setting. In this scenario,
where the object dynamic model does not completely match the motion
of the underlying objects, CDP-WGL is demonstrated to provide better
estimation and tracking accuracy whilst performing 4.13 to 4.61 times
faster than the TC-OSPA(2) method.

5. Conclusions

In this paper, we presented a clustering-based approach for DMOT
problems under limited and unknown FoV sensors. Our solution com-
rises a clustering-based kinematic fusion method with a weighted

graph-based label-consistent fusion method. Detailed comparative anal-
yses using varied scenarios demonstrated that our clustering solution
ot only reduces computational demands but also maintains compet-
tive tracking accuracy compared to state-of-the-art track consensus
lgorithms. Furthermore, the adaptability of our methods was particu-
arly evident in realistic DMOT settings, even when faced with dynamic
odel discrepancies. This work demonstrates the potential benefits and

ffectiveness of embedding clustering algorithms into distributed multi-
bject tracking systems, especially in environments with restricted
ensor visibility. Notably, we can observe the challenging problem of
etermining hyperparameters, such as 𝜖 in DBSCAN, in the context of
imited FoV sensors with partially overlapping FoV, still remains. Our
ork suggests that determining such a hyperparameter in an online
anner forms a promising direction for future work.
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