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Abstract

Radio tagging and tracking are fundamental to understanding the movements and

habitats of wildlife in their natural environments. Today, the most widespread, widely

applicable technology for gathering data relies on experienced scientists armed with

handheld radio‐telemetry equipment to locate low‐power radio transmitters

attached to wildlife from the ground. Although aerial robots can transform labor‐

intensive conservation tasks, the realization of autonomous systems for tackling task

complexities under real‐world conditions remains a challenge. We developed

ConservationBots—small aerial robots for tracking multiple, dynamic, radio‐tagged

wildlife. The aerial robot achieves robust localization performance and fast task

completion times—significant for energy‐limited aerial systems while avoiding close

encounters with potential, counterproductive disturbances to wildlife. Our approach

overcomes the technical and practical problems posed by combining a lightweight

sensor with new concepts: (i) planning to determine both trajectory and

measurement actions guided by an information‐theoretic objective, which allows

the robot to strategically select near‐instantaneous range‐only measurements to

achieve faster localization, and time‐consuming sensor rotation actions to acquire

bearing measurements and achieve robust tracking performance; (ii) a bearing

detector more robust to noise; and (iii) a tracking algorithm formulation robust to

missed and false detections experienced in real‐world conditions. We conducted

extensive studies: simulations built upon complex signal propagation over high‐

resolution elevation data on diverse geographical terrains; field testing; studies with

wombats (Lasiorhinus latifrons; nocturnal, vulnerable species dwelling in underground

warrens) and tracking comparisons with a highly experienced biologist to validate the

effectiveness of our aerial robot and demonstrate the significant advantages over

the manual method.
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1 | INTRODUCTION

Understanding movements, activities, and patterns in animal behav-

iors is essential for biodiversity conservation, natural resource

management, and precision agriculture. Today, field scientists employ

multiple techniques, such as vision‐based sensors (Christiansen

et al., 2014; Gonzalez et al., 2016; Olivares‐Mendez et al., 2015;

Roy et al., 2023; Selby et al., 2011), Global Positioning System (GPS)

tags, or very high frequency (VHF) tags (Cochran & Lord, 1963; Foley

& Sillero‐Zubiri, 2020; Jin et al., 2023; Kenward, 2000) to study animal

behaviors, movements, and activity. Despite the advances in

technology, VHF radio‐telemetry or radio‐tracking is still the most

important tool employed to study the movement of animals in their

natural environments. Because they are smaller, lightweight, suited

for nearly all mammal and bird species, and operate for longer in

comparison to GPS‐based counterparts. Consequently, remains a

popular and cost‐effective technique for field studies (Bridge

et al., 2011; Saunders et al., 2022; Wikelski et al., 2007). However,

the traditional method of radio‐tracking typically requires researchers

to trek long distances in the field, armed with cumbersome radio

receivers with hand‐held antennas and battery packs to manually

home in on radio signals emitted from radio‐tagged or collared

animals. The precious spatial data acquired through radio‐tracking

comes at a significant cost to researchers in terms of manpower, time,

and funding. The problem is often compounded by other challenges,

such as low animal recapture rates, equipment failures, and the

inability to track animals that move into inaccessible terrain or

underground burrows.

Developments in low‐cost unmanned aerial vehicles (UAVs) with the

capacity to carry payloads, such as radio receivers and antennas

(Anderson, 2017; Lahoz‐Monfort & Magrath, 2021), are a potential

solution. Because of the advantages offered by the ease of deployment

and high mobility, UAVs have the potential to automate and scale up

manual tasks to significantly reduce the time, labor, and cost of employing

traditional tracking approaches. Early achievements in autonomous systems

for wildlife tracking have demonstrated robotic platforms for the task (Cliff

et al., 2018; Nguyen, Chesser, et al., 2019; Tokekar et al., 2010; Vander

Hook et al., 2014; Yılmaz & Bayram, 2023). The approaches localize VHF

radio‐tagged animals using either the Receiver Signal Strength Indicator

(RSSI) or Angle of Arrival (AoA) of radio signals emitted from radio tags

where the robot's trajectory‐planning algorithm endows autonomy to

improve the localization accuracy—(Cliff et al., 2015, 2018) or reduce the

tracking error— (Nguyen, Chesser, et al., 2019). Despite the recent

advancements, the realization of an autonomous UAV capable of dealing

with the technical and practical complexities of the problem remains a

challenge. For example,

• RSSI‐based approach—capable of rapid measurements and benefit-

ing from a simple receiver that requires a single directional antenna,

only demonstrates superior performance across mostly flat terrains

or when the radio propagation model is accurately known (Nguyen,

Chesser, et al., 2019). But, building and employing an accurate radio

propagation model requires access to terrain information and

dealing with variables that can change dynamically, such as changes

in signal attenuation due to the appearance of trees and the impact

of moisture conditions on signal propagation.

• AoA approach—although more robust in unfamiliar or complex

environments, requires a larger and bulky antenna array and long

measurement acquisition times; 45 s per measurement (Cliff

et al., 2015).

• Practically, autonomous systems need to operate under limited

battery power, onboard processing, flight times, and payload

capabilities of UAVs (ideally, an aerial robot should fly, track, and

locate animals and return to the base without needing an

intervening battery change away from the base).

• Multiplicity of VHF radio signal propagation in complex terrains

complicates automatic localization algorithms and detection of, often

weak signals, of simplistic wave modulations from VHF radio collars.

• Potential disturbances to animals caused by the operation of the

UAV (Headland et al., 2021; Hodgson & Koh, 2016; Scobie &

Hugenholtz, 2016) are counterproductive to the task and requires

mitigation strategies.

Our work formulates a planning problem for a new hybrid approach

to exploit the simple and fast RSSI measurement acquisitions and

selectively exploit the slower, more robust AoA measurements by

providing an aerial robot the autonomy to plan not only its trajectory to

track and locate animals but also its measurements to track multiple,

mobile, radio‐tagged wildlife, simultaneously (Figure 1). The robot we

have developed is fast, robust, and scalable to simultaneously track and

localize multiple radio‐tagged wildlife while planned trajectories minimize

disturbances to wildlife. We summarize our main contributions below:

(1) We propose planning not only trajectories but also the measurement

method. The planning algorithm formulation determines the most

informative trajectory and measurement acquisition actions to

reduce the time needed to track and locate multiple, dynamic,

radio‐collared wildlife in various terrain conditions. The planner

allows the robot to (i) exploit the simplicity and rapidity of RSSI

measurement acquisitions for range‐only tracking and (ii) the time‐

consuming bearing measurement method when range‐only mea-

surement uncertainty is high. Importantly, to avoid close approaches

to wildlife and minimize potential disturbances, trajectory planning is

constrained by a probabilistic void region.

(2) Our state estimation algorithm for tracking is robust across

variable environmental and terrain conditions as well as VHF

signal propagation artifacts to localize radio‐tagged wildlife in

various outdoor environments in three‐dimensional (3D) settings

without detailed terrain information. To achieve this robustness:

(i) we integrate an imprecise likelihood function to account for the

complex radio propagation effects such as signal diffraction and

vegetation attenuation, removing the need for a precise RSSI

measurement model. This method expands the versatility of the

estimation algorithm to allow RSSI measurements to be used for

tracking when an accurate model of measurements in a given

terrain is difficult to build; (ii) we propose a bearing detector

based on the rotation AoA measurement method to generate

more robust AoA measurements under noisy conditions; and (iii)
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F IGURE 1 A ConservationBot in flight, right after take‐off to track and locate southern hairy‐nosed wombats. Inset: Southern hairy‐nosed
wombat Lasiorhinus latifrons released into their habitat after being tagged with a very high frequency radio collar.

compared with prior approaches, we have explicitly considered

practical challenges in tracking radio‐tagged animals such as

missed measurements, object birth, and death, poor signal‐to‐

noise ratio (SNR) impacting signal detection probabilities and

formulated a Bernoulli filter (BF) for the tracking task.

(3) To examine the performance of our system, we used extensive

Monte‐Carlo simulations modeling complex VHF signal propaga-

tion over 3D terrains with different levels of complexity and

extensive field experiments. Our field testing included over 30

missions and a pilot study with radio‐tagged southern hairy‐nosed

wombats (Lasiorhinus latifrons), a nocturnal, burrowing species

that uses underground warrens and, therefore, challenging to

track with manual methods as well as an autonomous system

versus expert‐human‐tracker field trials to demonstrates the

efficacy, performance, and versatility of our system.

The rest of this paper is organized as follows. Section 2 presents

related studies in radio tracking and localization methods employing

UAVs along with methods for estimating the state of objects, such as

radio‐tagged wildlife using noisy measurements. In Section 3 we

present the problem formulation, the proposed methods, and the

system underpinning our fast, robust aerial robot for locating multiple

wildlife in complex terrains. Section 4 evaluates our proposed

methods through an extensive series of simulation‐based scenarios.

Our proposed robot prototype construction is described in Section 5.

Section 6 describes the series of field experiments and results

confirming the effectiveness of our approach followed by lessons

learned in Section 7 and concluding remarks in Section 8.

2 | RELATED WORK

The problem of using UAVs to localize radio sources has been studied

recently in the literature. More broadly, existing studies can be

categorized based on the measurement methods employed; those

using RSSI‐based methods or those using AoA‐based methods. The

design of the system and algorithms are primarily a function of the

measurement method employed. Hence it is useful to consider

previous methods from this perspective. We also provide a brief

review of related works in multi‐object tracking methods since our

work focuses on tracking multiple animals.

2.1 | AoA‐based systems

A widely used method for measuring the AoA of radio‐frequency (RF)

signal is through the use of a phased array antenna. While the method

can measure AoA with high accuracy with minimum measurement time,

it requires specialized hardware and a sophisticated signal processing

algorithm. Therefore, such a sensor payload is difficult to mount and

employ on a UAV platform due to weight, size, and processing power

constraints. Consequently, an alternative approach has emerged using a

directional antenna, which is rotated to determine the direction of the

signal source to detect AoA. Graefenstein et al. (2009), an early study,

demonstrated a ground‐based robot system that used a rotating

directional antenna to determine the AoA and locate the source of a

wireless node. Venkateswaran et al. (2013) later developed an RF

source‐seeking system with a single‐wing rotating micro aerial vehicle.

By fitting a directional antenna to its wing and exploiting the natural

rotation of the vehicle, the system can quickly estimate the AoA of an RF

source at each rotation.

Early efforts to demonstrate the rotating AoA‐based methods for

radio‐tagged animal localization were reported by Tokekar et al. (2010),

Cliff et al. (2015, 2018), VonEhr et al. (2016), and Torabi et al. (2018).

The studies developed a multirotor UAV system with a path‐planning

algorithm to direct the UAV to collect AoA measurements. AoA methods

are robust against the multipath effects of radio propagation but the

measurement time required (45 s per measurement in Cliff et al., 2015) is

significantly longer than RSSI‐based approaches with near‐instantaneous

measurements. The impact of longer measurement times is more
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practical—it limits the maximum search area, increases flight times to

complete a task, and reduces the ability to locate mobile animals. For

example, while undertaking a slow rotation can increase the accuracy of

the acquired AoA measurement for static wildlife, it is counter-

productive if objects are mobile.

An alternative, a pseudo‐bearing approach (Dressel &

Kochenderfer, 2018), sought to address the limitations of rotational

AoA methods by incorporating an additional unidirectional antenna

along with a directional antenna, albeit for operation at a much higher

frequency, 2.4 GHz, than VHF. As a result, the methods can perform

measurement updates more quickly and improve localization time.

However, this approach requires a more complex radio receiver with

multiple antennas; consequently, it increases the weight of sensor

payload on a UAV, especially in VHF signal tracking scenarios

necessitating antennas with large physical dimensions, while trajec-

tory planning with such an approach also remains to be demonstrated

in practice.

2.2 | RSSI‐based systems

In contrast, the RSSI‐based systems utilize signal strength to estimate

the distance between the radio transmitter and the receiver. This

approach only requires a simple and lightweight receiver and

antenna. The use of RSSI‐based measurements on board a UAV to

locate radio‐tagged wildlife was demonstrated by Körner et al. (2010),

where a fixed‐wing UAV equipped with a directional antenna was

used to locate a fixed location radio tag. Then, a system based on a

multirotor UAV with an omnidirectional antenna was presented by

Santos et al. (2014). The approach employed a receiver to capture

measurements of the radio signal's SNR and estimated the radio tag's

position offline. Nguyen et al. (2020) and Nguyen, Chesser et al. (2019)

demonstrated an RSSI‐based aerial robot with online path planning

for RSSI measurements and a particle filter‐based estimation method

using a customized, lightweight directional antenna for localizing

multiple mobile objects on relatively flat terrains along with a

possibility to locate wildlife in a 3D space in Nguyen, Rezatofighi

et al. (2018). Hui et al. (2021) took a similar approach using a small

UAV with a dipole antenna to collect RSSI measurements along a

fixed trajectory where the positions of radio‐collared animals were

determined offline based on a signal propagation model.

In contrast to AoA‐based methods for the task, an RSSI‐based

system is more efficient due to its simpler receiver and faster

measurement acquisition times. However, the key limitation is

sensitivity to environmental effects impacting radio signal propagation,

signal diffraction, scattering, and vegetation attenuation. Because

propagation characteristics of the radio signal need to be accurate

but, in practice, can be difficult to model. Topographical variations,

vegetation coverage, or weather can result in unpredictable attenuation

of radio signals and thus limit the scenarios in which RSSI‐based

methods can be reliably applied. As a consequence, RSSI‐based methods

are mostly used in less complex environments where radio propagation

is easily modeled and predictable.

2.3 | Multi‐object tracking

The primary problem in multi‐object tracking is to estimate the state

of multiple objects when the associations between measurements

and objects are unknown. Traditional methods, including joint

probabilistic data association filter (Bar‐Shalom, 1987) and multiple

hypothesis tracking filter (Blackman, 1986), explicitly associate

measurements and objects. More recent approaches based on

random set statistics (Mahler, 2007b) have led to methods, such as

the probability hypothesis density (PHD) filter (Mahler, 2003),

cardinalized PHD filter (Mahler, 2007a), multi‐object multi‐Bernoulli

filter (Mahler, 2007b; Vo et al., 2009), generalized labeled multi‐

Bernoulli filter (Vo & Vo, 2013), and labeled multi‐Bernoulli filter

(Reuter et al., 2014). However, in our problem, individual radio‐

collared wildlife can be uniquely identified by the frequency of its

radio‐collar signal. Therefore, we do not need to solve the complex

data association problem. The model for measurements (RSSI or

AoA) is nonlinear, therefore a filter suitable for nonlinear systems,

such as a particle filter (Gordon et al., 1993) was used in prior

robotic systems for the task. In contrast, we consider a particle

implementation of a Bernoulli filter (Mahler, 2007b) formulation not

only to account for a nonlinear system but also to explicitly model

practical signal propagation effects, such as measurement miss

detections and false detections into the formulation. Thus, making

the method of estimating the location of wildlife more robust than

the particle filter.

2.4 | Summary

RSSI‐based and AoA‐based methods are commonly used for

estimating the location of radio sources. When radio propagation

can be accurately modeled, the RSSI‐based methods provide

significant advantages over AoA‐based approaches, given their

simplistic receiver design and low measurement time. However, in

a complex environment, the AoA approach is a more robust method

due to it being invariant to various environmental variables and the

difficulty of building accurate propagation models for complex

terrains to support RSSI‐based methods. We present an approach

that combines the advantages of these two measurement ap-

proaches; an aerial robot system that takes advantage of both

methods while minimizing their limitations.

Importantly, existing systems, irrespective of the measurement

method, used an online estimator to determine the location of

objects. The estimator, based on Bayesian estimation theory, requires

accurate noise models and sensor measurement models to determine

the probability distribution of objects; these estimation methods

include particle filters (Körner et al., 2010; Nguyen, Chesser,

et al., 2019), grid filters (Cliff et al., 2015, 2018), and Kalman filters

(Jensen & Chen, 2013). Notably, these estimators cannot handle

practical challenges with trackings, such as missed detections and

false detections; explicitly modeling these real‐world conditions may

lead to better estimation accuracy.
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3 | PROPOSED PLANNING FOR
TRACKING AND LOCALIZATION
PROBLEM FORMULATION

We consider the problem of controlling a UAV equipped with a

simple sensor system—a directional antenna and a digital signal

processing module—for autonomously localizing multiple radio‐

tagged wildlife while maintaining a safe distance from the wildlife

of interest to prevent potential disturbances. Performing tracking

(estimating the positions of individual radio‐tagged wildlife over time)

in real‐time necessitates an online estimation method. And perform-

ing the task autonomously necessitates a dynamic planning method

for robot navigation. In contrast to previous problem formulations,

we consider incorporating an RSSI measurement model uncertainty

to remove the need for accurate measurement models—difficult to

derive in practice due to changing terrain and environmental

conditions—and consider practical signal detection artifacts such as

missed and false detection to formulate a robust method of

estimating the locations of wildlife using a Bernoulli BF. Further, in

contrast to previous approaches, we consider dynamically planning

both the trajectory and the signal measurement method using a

partially observable Markov decision process (POMDP) formulation

to allow the autonomous selection of the most informative

measurement method: (i) simple and fast RSSI measurements or (ii)

slower but more robust AoA measurements.

Figure 2 provides an overview of our proposed planning for

tracking and localization approach built upon a joint Bayesian‐

POMDP theoretical framework, which includes: (i) an AoA measure-

ment model and an RSSI measurement imprecise model for increased

tracking and localization robustness against the impacts of varying

terrain and environmental conditions; (ii) compensated rotation AoA

measurement method to generate AoA measurements with higher

accuracy under noisy conditions; (iii) Bernoulli Filter employing both

RSSI and AoA measurements to produce estimated object states

(tracks), even under low measurement detection probabilities,

experienced in practical system deployment settings; (iv) measure-

ment and trajectory planning to select both the best trajectory and

measurement method for faster and more robust localization under

different terrain conditions while minimizing disturbances to the

wildlife of interest. In the following sections, we detail our

formulation of real‐time planning for tracking and localizing wildlife

described in Figure 2.

3.1 | State estimation and measurement models

This section presents our online tracking and localizing formulation

under the theoretical framework of a BF to formulate a robust

method of estimating the locations of wildlife using the proposed

AoA measurement detection method, the associated measurement

model, and the imprecise RSSI measurement model.

Before proceeding further, we introduce the following

conventions for notation consistency: standard letters (e.g., x X, )

for scalar values, lowercase bold letters (e.g., x) for vector values

(e.g., single‐object states), bold capital letters (e.g., X) for set values

(e.g., multi‐object states), and blackboard letters (e.g., ) for state

spaces.

3.1.1 | Radio signal model of a VHF wildlife collar

It is first useful to understand the nature of the signal source since

the measures of this signal will need to be employed to estimate the

location of each wildlife. Each radio tag employed for studying

wildlife emits an on–off‐keying signal at a unique frequency f

with an unknown time offset ∈τ 0
+ as illustrated in Figure 3.

Now, let us denote the state of the UAV (observer) as

∈θ πu u= [ , ] × [0, 2 )l
T u T( ) 3 , including its position u u uu = [ , , ]l x y z

T

F IGURE 2 An overview of the proposed Bayesian‐POMDP
theoretical framework to realize an autonomous aerial vehicle for
fast, robust tracking of multiple wildlife in complex terrains. Here, the
UAV state is denoted by ut, and the belief densities of the set of
objects (in our case wildlife) are denoted by Xt. Briefly, (i) the
proposed compensated AoA measurement detector employs RSSI
measurements Z tR, during an AoA measurement action ∈at AoA to
generate an AoA measurement Z tA, ; (ii) Bernoulli filters utilize RSSI
measurements Z tR, along with the imprecise RSSI model and AoA
measurements Z tA, along with the AoA model at time t to achieve
robust estimations of object states (e.g., the position of each wildlife);
and (iii) the newmeasurement (AoA and RSSI) and trajectory‐planning
formulation using a POMDP generate control actions at while
ensuring the UAV maintains a safe distance from the wildlife of
interest by generating void‐constrained trajectories. AoA, Angle of
Arrival; POMDP, partially observable Markov decision process; RSSI,
Receiver Signal Strength Indicator; UAV, unmanned aerial vehicle.

F IGURE 3 On–off‐keying signal with pulse width D, period T ,
time offset τ , and amplitude γ .
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and heading angle θ u( ) and the state of each radio‐tagged wildlife as

∈ ⊆p p px = [ , , ]x y z
T 3  , where ⋅( )T is the matrix transpose. Then,

the noiseless signal χ t( ) at time t from an object with state x received

by a directional antenna mounted on a UAV with state u in the far

field region can be modeled as (Nguyen, Rezatofighi, et al., 2019):

χ t γ πft D T t τx u( ) = ( , )cos[2 + Φ ]rect( , , − ),t (1)

where

• ∈Φt  is the received signal phase at time t.

• γ d G G ζ d dx u x u x u( , ) = Γ( ) ( ( , ))( ∕ ( , ))n0 r a 0
∕2 is the received signal

amplitude when the distance between object x and observer u is

d x u( , ) and with source signal amplitude dΓ( )0 , which is measured

at reference distance d0 (Patwari et al., 2005); ∈n + is the

environment‐dependent path‐loss exponent; Gr is the receiver

gain; ⋅G ( )a is antenna gain pattern; ζ θx u( , ) = arctan2( ) −
p u

p u
u−

−
( )x x

y y

which convert the azimuth angle from object x to observer u into

the local reference frame of the observer with heading θu.
• ⋅D Trect( , , ) is a periodic rectangular function with pulse width D

and period T , and T D> :

∑D T t τ τ τ D t iTrect( , , − ) = boxcar( , + , + )
i=−∞

∞

(2)

and


a b x

a x b
boxcar( , , ) =

1, ≤ ≤ ,

0, otherwise.
(3)

3.1.2 | Bernoulli filter

To infer the unknown state ∈x  (3D coordinates of wildlife)

given noisy measurements ∈z , AoA and RSSI measurements

extracted from the received signals, we consider a Bernoulli

filter—also known as JoTT or joint object detection and tracking

filter (Mahler, 2007b; Vo, 2008; Vo et al., 2012). Recall each

object—radio‐collared wildlife—emits a signal at a unique fre-

quency; hence a unique object's state x can be estimated from

the measurement and tracked independently. Thus, we do not

need to solve the complex data association problems typical of a

multi‐object tracking setting and can estimate the state of each

object using a Bernoulli filter formulation independently.

The Bernoulli filter is an exact Bayesian filter for non‐linear/non‐

Gaussian systems based on the random finite set theory (RFS)

(Mahler, 2007b). Notably, the filter is capable of handling practical

signal detection artifacts such as missed and false detections and

dealing with the reality of animals with VHF radio collars wandering

in or out of the sensor's detection range in a unified framework.

The Bernoulli RFS X can either have at most one element with

probability r distributed over the state space  according to probability

density function (PDF) s x( ) or empty with probability r1 − :

∅

⋅





  

r

r sX

X

x X x

X

Ψ( ) =

1 − , if = ,

( ), if = { },

0 if ≥ 2,

(4)

where  X denotes the cardinality of X.

Given measurement set  z zZ = { , …, }t t t
Z(1) ( )t at time t, the posterior

distribution X ZΨ( )t t1: from time t − 1 to time t can be propagated in two

steps, the prediction step and update step. Notably, Bernoulli RFS (4) is

entirely described by its existence probability r and single‐object PDF

s x( ). Therefore, the prediction and update step of (4) only needs to

propagate r and qx.

The prediction step for the Bernoulli filter is

rb is the probability of object birth and b x( )t t−1 is the spatial

distribution of predicted object birth. These two parameters models

object to enter or leave a search space. In our context, wildlife may

disappear from a search space, such as going underground or

appearing suddenly from burrows, as is the case with the species we

investigate in our field trials. q x x( ′)t t−1 is the object transitional

density, which describes the object's dynamic.

The update step for the Bernoulli filter is

⋅

∈


 

 

r
r

q
P P

sx
x x

x

=
1 − Δ

1 − Δ
,

( ) =
1 − ( ) + ( )∑

1 − Δ
( ),

t t
t

t t t

t t

L

λc

t
t t

z Z
z x

z

−1

D D
( )

( )
−1

t

t (6)

where

∈




∫ ∑
∫

P s d
L s d

λc
x x x

z x x x

z
Δ = ( ) ( ) −

( ) ( )

( )
t t t

t t t

z Z
D −1

−1

t

(7)

with L z x( )t being the measurement likelihood function and λ being

the expected number of false measurement with PDF c z( ). P x( )D is

the probability of detection given state x.

For more detailed derivation and implementations of the

Bernoulli filter, we refer the reader to Mahler (2007b) and Ristic

et al. (2013) for further reference.

The filter update step (6) requires the likelihood of measure-

ments L z x( )t to obtain the posterior distribution. We derive the

measurement likelihood for two types of measurements: (i) RSSI and

(ii) AoA. Recall we consider an imprecise measurement model for

RSSI; we describe its formulation next, followed by our proposed

robust AoA detector formulation and the AoA measurement model

for filter updates.

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅


  


    

 
∫

r r r r r

q
r r b r r q s d

r r r r
x

x x x x x

= (1 − ) + ,

( ) =
(1 − ) ( ) + ( ′) ( ′) ′

(1 − ) +
,

t t b t t s t t

t t
b t t t t s t t t t t t

b t t s t t

−1 −1 −1 −1 −1

−1
−1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1

(5)
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3.1.3 | Imprecise RSSI measurement model

Given signal with form (1), the primary measurement that can be

obtained is RSSI measurement, which is completely characterized by

γ x u( , ) and defined as its root‐mean‐square power. Suppose the

receiver gains G = 1r , then an RSSI measurement can be expressed as

z h γ

d n d d G ζ

x u x u

x u x u

= ( , ) = 10 log (( ( , )∕ 2 ) )

= Γ̃( ) − 10 log ( ( , )∕ ) + ˜ ( ( , )),

R R 10
2

0 10 0 a

(8)

where






( )dΓ̃( ) = 10 log

d
0 10

Γ( )

2

2
0 , andG ζ G ζx u x u˜ ( ( , )) = 10 log ( ( ( , )) )a 10 a

2 .

In a nonurban environment, the received radio signal is usually

corrupted by environmental noise and can be modeled as

z h wx u= ( , ) + ,R R R (9)

where ⋅w σ~ ( ;0, )R R
2 is measurement Gaussian white noise with

covariance σR
2. Equation (9) yields the RSSI likelihood function:

( )z z h σx u x u( ; , ) = ; ( , ), ,R R R R R
2 (10)

where ⋅ μ σ( ; , )2 is the Gaussian PDF with mean μ and variance σ2.

The path‐loss model in (9) is accurate when the receiver is within

direct line‐of‐sight to the transmitter and other forms of loss are

negligible. However, in complex terrain conditions, other forms of loss

introduced by multipath propagation, diffraction, scattering, shadowing,

or attenuation due to vegetation, are not negligible, which makes such a

model generally inadequate. An illustration of vegetation and terrain loss

variations over an example terrain gathered from digital elevation map

data from Australia‐Geoscience (2022) is presented in Figure 4. Without

detailed terrain and site information (such as vegetation), it is generally

difficult or impractical to construct an accurate measurement model,

especially under complex terrain conditions, such as hills, mountains, and

varying vegetation conditions.

To handle the practical constraints of using RSSI measurements, we

consider incorporating a model uncertainty or imprecision to remove the

need for an accurate measurement model. We introduce an additional

error term μ x u( , )S which can represent any practical propagation

complexities that can cause the RSSI measurements to deviate from the

simple model in (9). Now, we express the RSSI measurement model that

incorporates various measurement model uncertainties:

z h μ wx u x u= ( , ) + ( , ) + .R R S R (11)

The term μ x u( , )S can be considered as an unknown parameter of

the measurement function, and (11) can be rewritten as

h μ h μx u x u x u( , ; ) = ( , ) + ( , )R S (12)

where we refer ∈μ μ μ[ , ]min max as the (RSSI) model imprecision, and

μ μ x u= min( ( , ))min S and μ μ x u= max( ( , ))max S , ∀ ∈ ∈x u,  are the

upper and lower bounds of the model imprecision, respectively.

Although it is usually impractical to know μ x u( , )S precisely, it is

relatively easier to estimate its upper and lower bounds μmin and μmax.

Due to the presence of unknown parameter μ, h : →  from

(12) is not a function, since a point in  now map to infinitely many

points in . To find the likelihood function for the imprecise

measurement model in (11), the measurement set h μ wx u( , ; ) + R

can be represented by a random closed set ⊆  (Mahler, 2007b).

Then the generalized likelihood function characterized by the

imprecise measurement function h μx u( , ; ), which accounts for the

model imprecision μ is defined as

̃ ∈ ∈L z Pr z Pr z h μ wx u x u( ; , ) = ( ) = ( ( , ; ) + ),R R (13)

where ⋅Pr ( ) denotes the probability of an event. In the following

sections, we will refer to (13) as the imprecise likelihood function

since μ represents the model imprecision.

When wR is zero‐mean white Gaussian, (13) can be solved

analytically (Ristic, 2011):

F IGURE 4 (a) An example complex terrain from Australia‐Geoscience (2022) with a fixed receiver (RX) marked by a red circle. (b) Simulated
environment‐dependent signal strength attenuation resulting only from terrain loss and vegetation loss, without the attenuation component
d d x u( ∕ ( , ))n0 over distance with a transmitter placed at each coordinate point on the terrain map. For transmitter locations without significant
blockage from terrain conditions (locating at Y < 1000m), the signal attenuation is significantly less than those blocked by the terrain (most
locations when Y > 1000m). Notably, terrain loss simulated is formulated in (33) and vegetation loss is formulated in (32) in Section 4.1.
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̃ ( )∫ ( ) ( )L z h z σ dh z h σ z h σx u( ; , ) = ; , = ; ̲ , − ; ¯, ,
μ

μ

R R
2

R
2

R
2

min

max

(14)

where ∫z μ σ ζ μ σ dζ( ; , ) = ( ; , )
z2
−∞

2 is the Gaussian cumulative distri-

bution function (CDF), h h μx u= min ( ( , ; ))
μ

and h h μx u= max ( ( , ; ))
μ

.

We can understand the consequence of using an imprecise

likelihood as having the effect of broadening the posterior PDF and

imparting a higher variance compared with using the precise

likelihood where the model imprecision μ is known (Ristic, 2011).

The imprecise likelihood enables us to expand the application

scenarios of RSSI measurements for object tracking and localization

by simply providing upper and lower bounds of model imprecision μ.

In addition to the RSSI measurement, we also consider obtaining

2D (azimuth) AoA measurements possible by planning a gyration

motion by the drone as these are robust to variations in RSSI

measurements impacted by complex terrain conditions. However,

AoA measurements are still detected from the RSSI measurement

receiver, and we propose a robust detection method and describe the

AoA measurement model in Section 3.1.4.

3.1.4 | Compensated AoA detector and
measurement model

Since the UAV system we consider is highly maneuverable and is only

equipped with a lightweight payload of a directional antenna and a

simple receiver to provide RSSI measurements, we adopted the

antenna rotation approach. The planning algorithm considers a

measurement action involving the rotation of the antenna‐equipped

UAV to obtain the AoA of a radio signal. However, a problem arises

under weak signals from distant radio tags. We describe the problem

and our proposed compensation method to build a robust AoA

detector and the associated measurement model below.

Correlation coefficient‐based detector: The UAV performs one full

rotation and uses the correlation between the collected RSSI

measurements and the antenna gain pattern to determine the AoA.

More specifically, after collecting k detected RSSI measurements

[ ]z zz = , …,t t t t
T

R, : R, R,k k1 1 with associated detected object state

x x x= [ , …, ]t t t t: k k1 1 and UAV state u u u= [ , …, ]t t t t: k k1 1 at time

t t[ , …, ]k
T

1 , the rotation AoA measurement is then given by

( )( )θz h ρ G αx u z= ( , ) = argmax , ˜ + ,t t t t
α

t t t t
u

A A1 : : R, : a :
( )

k k k k1 1 1 1 1 (15)

where Pearson correlation coefficient ≜ρ σ σx y x y( , ) cov( , )∕ ( )x y , and





θ θ θ= , …,t t

u
t
u

t
u T

:
( ) ( ) ( )

k k1 1
are UAV headings extracted from UAV states

ut t: k1 (recall that θu u= [ , ]l
u T( ) ).

While the correlation coefficient approach is sufficient when the

receiver can detect the majority of radio pulses, its performance

deteriorates as the strength of the detected signal reduces. This can

significantly impact the ability to localize distant objects or objects

equipped with radio tags configured with low transmit power. For a

typical directional antenna gain pattern with two major lobes, its

front (main) lobe pattern is generally similar to its back lobe. Due to

the similarity in the front and the back lobe patterns, the

measurement sequence for distant objects could correlate more

strongly to the back lobe of antenna gain than the front lobe under a

low number of detections (where not all of the measurements are

detected due to the weak signal strength of received signals).

Consequently, the correlation coefficient approach leads to an AoA

measurement with approximately 180° error in these instances.

Figure 5 illustrates a scenario from field testing the AoA

measurement method where the receiver is only able to detect a

fraction of the radio pulses emitted by the radio tag during a full

rotation action when the distance between the UAV and the radio

source is increased. In this scenario, the reduced number of

measurements observed correlates more strongly to the back lobe

of antenna gain than the (main) front lobe. Consequently, an incorrect

AoA is detected. The result is an approximately 180° error.

Cross‐correlation‐based detector: In a scenario where the signal

strength is weak, we can observe the receiver to be more likely to

detect the signals when the main lobe (front) of the antenna is

directed at the signal source. Therefore, instead of using the Pearson

correlation coefficient, cross‐correlation can be used to prioritize

matching the strongest RSSI measurement to the front (main) lobe of

the antenna:

( )( ) θz h G αx u z= , = argmax , ˜ + ,t t t t
α

t t t t
u

A A2 : : R, : a :
( )

k k k k2 1 1 1 1 (16)

where ⋅  is the dot product, that is,   ∫a b a x b x dx, = ( ) ( ) .

While (16) can be used individually to generate AoA measure-

ments with fewer outliers, from our observation in practice, when the

radio tag's signal strength is strong, the cross‐correlation method (16)

produces AoA measurements with higher variance than the correla-

tion coefficient‐based AoA detector. Hence, the sole use of a cross‐

correlation‐based detector is detrimental to localizing radio tags

approaching the UAV receiver. To overcome this issue, we introduce

an approach to correct outlier AoA measurements.

Compensated AoA detector: On the basis of the observations we

discussed, we propose taking advantage of both AoA detection

approaches to construct a more robust detector. We propose

employing the cross‐correlation (16) method alongside the correla-

tion coefficient method (15) to mitigate the AoA measurement

ambiguity resulting from a correlation coefficient detector.

We propose exploiting the deviation between both AoA

detectors to correct the correlation coefficient AoA detector

measurements. When an outlier AoA measurement is produced by

the correlation coefficient AoA detector, the cross‐correlation AoA

detector's measurement will be significantly different. Notably, the

correlation coefficient AoA detector can generate AoA measurement

with 180° error for a typical directional antenna used for rotation‐

based AoA measurements such as Yagi antennas or the H‐type

antenna used in our experiments. Now, the compensated AoA

measurement based on a decision threshold, zATh, can be ex-

pressed as
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z

z z z z

z π
=

if − < ,

− rad otherwise.A

A A A A

A

1 1 2 Th

1

(17)

While we present the formulation of the method here, further

discussion of experimental results from field tests to demonstrate the

effectiveness of the proposed approach is presented in Section 6.3.

Importantly, while the compensation method addresses the 180°

ambiguity under noisy signal detection settings, if the number of

measurements received is significantly low, then all of the AoA

detection methods will fail to provide an accurate, usable measure-

ment. We model the impact of such AoA measurement errors as noise

in our AoA measurement model.

AoA measurement model: The distribution of zA is complex but can

be approximated by a Gaussian distribution in practice (Cliff

et al., 2018; Torabi et al., 2018) while assuming the object remains

stationary during the rotation. Then,

z h wx u≈ ( , ) + ,t tA A Ak k (18)

where ⋅w σ~ ( ;0, )A A
2 is a zero‐mean Gaussian noise with variance

σA
2 and







h

u p

u p
x u( , ) = arctan2

−

−
.

x x

y y
A (19)

Then the AoA likelihood is

( )L z z h σx u x u( ; , ) = ; ( , ), .A A A A A
2 (20)

3.2 | Joint measurement and trajectory‐planning
method

In our proposed approach, the UAV not only needs to determine the

trajectory action to navigate in the search environment but also

the measurement method to reduce the position uncertainty of

wildlife to achieve a robust and rapid method of tracking and locating

wildlife. The problem of automatically determining the best action

can be formulated and solved efficiently under a POMDP framework.

Formally, a POMDP is defined by tuple ϕ( , , , , , )   . , ,  
are state space, action space, and observation space, respectively.

q x x a( ′ , ) is the state transition function given action a and current

state x, is the reward function that characterizes the objective of

the planner, and Z x a( , ) is the observation likelihood function,

where ∈ ∈ ∈aZ x, ,  . Considering the resource limitations and

the need for an online planner for the tracking task, we consider a

computationally tractable POMDP formulation. Consequently, we

employ a myopic planning strategy where the goal is to determine an

optimal control action using a discrete action space at each planning

iteration. Under a myopic planning strategy, the computational

complexity is reduced by selecting one control action at a single

planning iteration as opposed to considering multiple control actions

in the future at multiple planning iterations. The optimal control

action for a myopic planner a*t is defined by maximizing the expected

reward function ⋅( )t H+ over the action space:

∈

a a* = argmax [ ( )].t t H
a

+
 (21)

The following subsections describe essential elements of our

POMDP‐based planner and considerations that enable real‐time

planning decisions in the context of a UAV with limited onboard

computing resources.

3.2.1 | Information‐based rewards

In a POMDP framework, the reward function can be categorized as (i)

task‐based rewards (Gostar et al., 2014) and (ii) information‐based

rewards (Kreucher et al., 2003). A task‐based reward is only

applicable when the objective can be explicitly formulated. For

object localization scenarios, the information‐based reward is

preferable to a task‐based reward since the primary objective is

reducing the position uncertainty of objects of interest, and

information‐based rewards prioritize gathering information; hence,

has a strong relationship with the objective of improving the

localization accuracy of objects (Beard et al., 2017; Hoffmann

et al., 2006). Importantly, in our problem formulation, information‐

based rewards provide a means to evaluate the quality of measure-

ment type to aid the planner in deciding between taking RSSI or AoA

(a) (b)

F IGURE 5 Illustrations of the correlation coefficient‐based AoA
detector performance with RSSI measurements collected at different
distances in field tests. (a) For a close object, the majority of the signal
emitted can be detected, and a correct AoA can be detected from the
distinct peak in the correlation coefficient plot. (b) For a distant object, not
all signals emitted are detected. In this scenario, measurements correlate
more strongly to the back lobe of antenna gain than the (main) front lobe.
Consequently, an incorrect AoA is detected; we can observe an
approximately 180° error. AoA, Angle of Arrival; RSSI, Receiver Signal
Strength Indicator.
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measurements. Consequently, we considered three information‐

based reward formulations since a theoretical basis for determining

the most effective formulation for our planning for tracking problems

does not exist.

Given the predicted belief density of an object Ψ =t H t+ ⋅ZΨ ( )t H t+ 1:

and the future updated posterior belief density Ψ =t H t H+ +

⋅Z Z aΨ ( , ( ))t H t t t H+ 1: +1: + at time t H+ , where Z a( )t t H+1: + is the hypothe-

sized measurement set if action a was executed, The three

information‐based rewards we considered are defined:

(1) Rényi divergence (Rényi, 1961; Ristic & Vo, 2010)

⋅ ∫
α

δa Ψ Ψ X( ) =
1

− 1
log ,t H t H t

α
t H t H

α
+

(Rényi)
+ + +

1− (22)

where α ≥ 0 parameter determines the effect of the tails of two

distributions on the rewards.

(2) Shannon entropy (Shannon, 1948)

 a Ψ Ψ( ) = ( ) − ( ),t H t H t t H t H+
(Shannon)

+ + +
(23)

where ∫ δX X X X(Ψ( )) = − Ψ( )logΨ( ) .

(3) Cauchy–Schwarz divergence (Hoang et al., 2015)





 
  





 
   

a
Ψ Ψ

Ψ Ψ Ψ Ψ
( ) = −log

,

, ,
.t H

t H t t H t H

t H t t H t t H t H t H t H
+

(CS) + + +

+ + + + + +
(24)

3.2.2 | Measurement and trajectory‐planning
control actions

One of the major strengths of employing the quad‐copter UAV is the

high maneuverability offered for traversing in a 3D space. Conse-

quently, we have significant flexibility in designing the control action

space. In our task, the available control actions should allow the UAV

to explore the search area and collect RSSI or AoA measurements. To

measure RSSI, the UAV does not require any special maneuvers, thus

allowing for a change in heading to change the navigation path is

sufficient. But, to measure AoA, a full rotation action must be

executed by the UAV. Therefore, our action space for the planner can

be decomposed into two subspaces, illustrated in Figure 6, and

described below:

∪= .RSSI AoA   (25)

Recall that we consider a discrete action space to reduce the

computational demands on the planner. Then, for the RSSI action

space RSSI we define nξ discrete headings, with each heading ξ

uniformly distributed across 0° to 360° (with reference to the

geographical north), at a fixed altitude for TP seconds.

For the AoA action space AoA , we augment the RSSI actions to

include a full rotation action. Therefore, the AoA actions include two

modes: (i) traveling along nξ discrete, uniformly distributed headings

at a fixed altitude for TR1 seconds followed by (ii) a full rotation

maneuver with duration TR2 seconds.

The action space we define intentionally limits the UAV to a

constant altitude, with two benefits: (i) it extends the flight time of

the UAV as changing flight altitude consumes a substantial amount of

energy and (ii) it simplifies the planning procedure. Further, allowing a

change in altitude necessitates an obstacle avoidance component to

ensure the safe operation of the UAV, which increases computation

demands. By limiting the control action to only allow a UAV to travel

on a 2D plain, we are able to ensure the UAV will not collide with

obstacles as long as its initial altitude is higher than the tallest

obstacle in the search area.

Notably, when evaluating the best control action between an

RSSI action and an AoA action, their reward ∈a( )t T+ RSSIP  ,

∈a( )t T T+ + AoAR1 R2  cannot be directly compared unless both rewards

are evaluated at the same horizon, that is, t T t T T+ = + +P R1 R2.

Therefore, we constraint the action space such that T T T= +p R1 R2 so

that RSSI actions and AoA actions take the same amount of time to

execute. Notably, when the UAV performs an AoA action, the receiver

is still capable of measuring RSSI during the first traversal phase of the

action. Hence, to avoid loss of useful information, the UAV also uses

these RSSI measurements in addition to the AoA measurement

generated at the end of executing the action to update the densities

of objects.

3.2.3 | Void‐constrained trajectory planning

To minimize the disturbance of UAV operations to wildlife, we

incorporated a void constraint into our planner. The void constraint

provides a probabilistic approach to maintaining distance to an object

without knowing the exact state of the object.

Given a region ⊆S  and Bernoulli density ⋅r qΨ = ( , ( )) on 
where p is approximated by set of weighted particles:

q ω δx x x( ) ≈ ∑ ( − )i
N i i
=1

( ) ( )s . The void probability function can be ex-

pressed as (Beard et al., 2017):

⋅






∑B S r r ω 1 x( ) ≈ (1 − ) + 1 − ( ) ,

i

N
i

S
i

Ψ
=1

( ) ( )
s

(26)

F IGURE 6 Illustration of an RSSI action in which the UAV travels
along heading ξ and an AoA action in which the UAV travels along
heading ξ followed by performing a full rotation maneuver. AoA,
Angle of Arrival; RSSI, Receiver Signal Strength Indicator; UAV,
unmanned aerial vehicle.
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where ⋅1 ( )S is the indicator function of the region S equal to 1 if

∈ Sx i( ) and 0 otherwise. We can interpret (26) as the probability of an

object with belief density Ψ that is outside the region S. While the

void region can be an arbitrary shape, we use a cylindrical void region

with radius ιmin, where V ιu( , )min denotes the void region given UAV

state u, given by

∈ V ι p u p u ιu x( , ) = { ( − ) + ( − ) < }.x x y ymin
2 2

min (27)

Now, the planning constraint can be expressed as

B V ι Pumin{ ( ( , ))} > ,t vΨ min mint (28)

where ∈P [0, 1]v min is a user‐defined void probability threshold.

Figure 7 illustrates the resulting void region and the application of the

constraint defined in (28) with two object densities as examples.

Importantly, a cylindrical void region is a natural choice for two

reasons: (i) when the radio signal is transmitted from a radio tag

directly below the antenna, due to the orientation of the antenna

onboard the UAV and the resulting lower gain, it can lead to

increasing the missed detection rate. A cylindrical void region can

potentially eliminate this scenario since a minimum horizontal

distance can be maintained between the UAV and radio tags; and

(ii) because the UAV will maintain a constant altitude during a mission

to conserve limited onboard battery power. Provided the flight

altitude is high enough, it is not necessary to consider the minimum

vertical separation distance.

3.2.4 | Implementation considerations for a real‐
time system

We considered a myopic planning formulation with a discrete action

space to manage the complexity of the planning problem. To reduce

the computational demands and realize a real‐time planner without

sacrificing the system's localization performance, we considered the

two following approaches.

Planning for the closest unlocalized object: At every planning

iteration, given a set of unlocalized objects' densities

Ψ X X= {Ψ ( ), …, Ψ ( )}n1 , instead solving for the optimal action that

maximized the total reward for all densities Ψ , we consider

maximized the expected reward for the closest belief density XΨ ( )c

to the UAV as adopted in Nguyen, Chesser et al. (2019), where

∈

dX x uΨ ( ) = argmin (¯ , )
ΨX

c
Ψ( )

(29)

with x̄ being the mean of object state given PDF XΨ( ). Once an

object meets the condition to be considered localized, the object's

belief density will be excluded from the next planning iteration and,

therefore, reduce the number of densities the planner needs to

process over time.

Planning for the closest unlocalized object has the benefit of

reducing the computational complexity of calculating the reward.

Limiting the number of planning densities makes the planner focus on

computing actions that best minimize localization uncertainty for the

closest object and, consequently, reduces the number of densities that

need to be considered by the planner from n to one. Interestingly,

conservation biologists in the field also follow an identical strategy to

locate multiple animals; they employ a handheld receiver system to

home in on the closest perceived wildlife based on their determination

of signal strength from audible beeps from the receiver.

Predicted ideal measurement set (PIMS): In general, Monte‐Carlo

integration is used to evaluate the expected reward in (21). This

process requires drawing M measurements i MZ a( ), = 1, …,t t H
i
+1: +

( )

which is obtained by sampling the belief density Ψt H t+ followed by

generating a simulated measurement according to the measurement

model. Then the estimated expected reward is given by

∑
M

a a[ ( )] ≈
1

( ).t H
i

M

t H
i

+
=1

+
( ) (30)

As the number of samples M increases, the estimated reward

converges to the true expectation. However, this method is

computationally intensive, so instead, we adopted the PIMS approach

(Mahler, 2004) to compute the reward where only one instance

(M = 1) of future measurement set under an ideal condition is

generated. The future measurement Z a( )t t H+1: + is now computed

by (i) computing the expected state of the belief density Ψt H t+ and (ii)

generating the expected measurement following the measurement

function (9) or (19) in the absence of measurement noise, false

measurements, and miss detections (P = 1D ). Therefore, the esti-

mated reward using PIMS is

a a[ ( )] ≈ ( ).t H t H+ +
(PIMS) (31)

Following the above implementation approach, the measurement

and trajectory‐planning algorithm we developed is succinctly

summarized in Algorithm 1.

F IGURE 7 Illustration of a cylindrical void region V with two
object densities. The void constraint may be violated for object A if
the probability of the nonoverlapping region (red‐shaded area)
between object A's belief density and void region is less than the
desired bound set by Pv min. UAV, unmanned aerial vehicle.
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4 | SIMULATION EXPERIMENTS

To reduce development time and risks associated with evaluating

concepts with a physical UAV system, and to investigate a wide range

of settings we employed simulation‐based experiments to evaluate

our proposed approach to answer the following questions:

• Robustness under various terrain conditions: Our approach aimed to

provide a robust, fast‐tracking, and localization method under

various terrain conditions. How does our proposed joint measure-

ment and trajectory planning for tracking algorithm perform

compared with existing approaches under different terrain

conditions?

• Impact of information‐based reward functions: We investigated

three different information‐based reward function formulations.

Does the choice of information‐based reward functions provide a

performance advantage?

• Effectiveness and impact of void‐constrained trajectories: We employ

a void constraint to maintain a safe distance between the UAV and

our target wildlife. However, the void‐constrained trajectories

could impact the duration of a mission to localize wildlife. Is the

approach effective and what is the impact on localization

performance?

• Robustness under practical signal detection limitations: In the field,

missed detections can occur and negatively impact performance.

Hence, how does our approach perform under the different

measurement detection probabilities compared with prior state

estimation methods employed for localizing wildlife?

First, we elaborate on the complex VHF signal propagation model

necessary to generate signals impacted by terrain conditions in our

simulations, in Section 4.1. Then, we describe the simulation settings in

Section 4.3 and discuss the results from the simulations in Section 4.4.

4.1 | Complex VHF signal propagation model

One of the key properties of our proposed formulation is the ability to

relax the requirement for an accurate radio propagation model by

incorporating an imprecise likelihood. To validate our approach in

simulation settings, we employ a radio propagation model that captures

the effects of (i) vegetation and (ii) terrain variations for generating the

radio tag signals. We illustrate both types of signal propagation loss and

parameters related to the model in Figure 8 and briefly describe the

formulation of the model used for generating signals below.

4.1.1 | Vegetation loss

We used the International Telecommunication Union (ITU) vegeta-

tion loss model to capture the effect of vegetation on VHF radio

F IGURE 8 Illustration of simulated VHF signal propagation model
and related parameters. Radio signal strength at fixed receiver (RX) is
influenced by the line‐of‐sight distance d , distance from the
transmitter to most significant path blockage d1, distance from the
receiver to blockage d2, height difference h between the blockage
and the path trajectory, vegetation depth Lv, and elevation angle
φ. VHF, very high frequency.
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signals (ITU‐R, 2021b). The loss due to vegetation (assumed to be

pine woodlands in our model) is defined as

h f L φ= 0.25 ,v
0.39

v
0.25 0.05 (32)

where f is the signal frequency in MHz, Lv is the vegetation depth in

meters, and φ is the elevation angle in degrees. We use f = 150 MHz

in our simulations.

4.1.2 | Terrain shadowing and diffraction

To model diffraction and shadowing effects from terrain conditions,

we adopted the ITU terrain model where the additional loss is given

by (ITU‐R, 2021a).

⋅h
h

F
= −20 + 10dB,d

1
(33)

where h is the height difference between the most significant path

blockage and the path trajectory, F1 is the radius of the first Fresnel

zone given by (ITU‐R, 2021a).

⋅
⋅

F
d d

f d
= 17.3 m,1

1 2 (34)

where d is the distance between signal transmitter and receiver in

km, d d,1 2 are the distances from transmitter and receiver to the

blockage in km and f is the signal frequency in GHz. Overall, by

subtracting (32) and (33) from the ideal RSSI measurement model (8),

the propagation model that considers the complexities imposed by

vegetation and terrain conditions related losses can be described as

⏟ ⏟

h d n d d G ζ

h h

x u x u x u( , ) = Γ̃( ) − 10 log ( ( , )∕ )) + ˜ ( ( , ))

− − .

0 10 0

distance loss

a

v

vegetation loss

d

terrain loss

  
(35)

An illustration of the impact of vegetation and terrain loss alone,

over a physical terrain obtained from Australia‐Geoscience (2022) is

presented in Figure 4 in Section 3.1.3.

4.2 | Comparison approaches

We consider previous planning and measurement methods employed

for tracking and locating wildlife to understand and evaluate the

effectiveness of our proposed measurement and trajectory‐planning

formulation for the problem.

We employed the Bernoulli filter formulation we proposed for

the state estimator for all methods. This decision benefits all other

methods because the filter formulation is inherently capable of

dealing with practical issues, such as miss detections. Importantly,

employing the Bernoulli filter formulation for all comparison

methods ensures the differences in performance are related to

demonstrating that the proposed trajectory and measurement

planning is a more effective approach for the task. This strategy

can more clearly demonstrate the performance advantages gained

from our proposed measurement and trajectory‐planning approach

(abbreviated as Meta‐Pilot). Further, we use mobile radio tags to

better capture wandering wildlife. Given the objective of void‐

constrained trajectories is to reduce disturbances, we employ void‐

constrained trajectory planning for all comparison methods. In the

following, we describe previous approaches and our specific

improvements to facilitate a more useful comparison, especially in

challenging settings.

• RSSI‐only approach: We adopt the RSSI‐only approach described in

Nguyen, Chesser et al. (2019) where the UAV receives RSSI

measurements from each radio tag, and the planner considers all

future measurements RSSI only. The study by Nguyen, Chesser

et al. (2019) used a two‐ray model to describe the propagation

effect on RSSI over mostly flat terrains and was therefore not

expected to perform well in more complex terrains. As a result, we

introduced our imprecise RSSI measurement model to improve the

robustness of the original method in both filtering and planning

algorithms. The RSSI‐only approach with our proposed imprecise

model is referred to as Imp‐RSSI in the following sections.

• AoA‐only approach: The AoA‐only approach uses rotation actions

to acquire bearing measurements (Cliff et al., 2015; Hood &

Barooah, 2011; Torabi et al., 2018; Venkateswaran et al., 2013;

VonEhr et al., 2016). Instead of the AoA detector methods in prior

work, we employed the improved detector proposed in

Section 3.1.4 to generate AoA measurements. Further, for this

approach, we propose using 20 s to complete an AoA measure-

ment, instead of the 45 s described in prior work (Cliff et al., 2015)

using AoA only measurements. Consequently, we keep the AoA

measurement acquisition action and detector to that used in our

Meta‐Pilot in this setting; hence, we can expect the performance

improvement to relate to our proposed measurement and

trajectory‐planning approach in contrast to the detector improve-

ments. We refer to this approach as cAoA(20 s) to highlight the use

of the proposed compensated AoA detector and the time duration

for the measurement action.

• AoA‐with‐RSSI‐update approach: The method described by Cliff

et al. (2018) sought to combine the benefits reported by Nguyen,

Chesser et al. (2019) with an AoA method. Here, rotation‐

correlation‐based AoA measurements are used for object state

estimation and trajectory planning, but an RSSI measurement

update is also performed after generating each AoA measurement.

The method in Cliff et al. (2018) takes 45 s to acquire a single AoA

measurement and uses a log‐path‐loss measurement model, given

in (9), for the RSSI measurement update. Given the problems we

have outlined in using RSSI models in complex terrains, we used a

higher measurement noise in the log‐path‐loss measurement

model for hilly and mountain terrain to attempt to manage the

RSSI model mismatch in complex terrains and ensure the

comparison method remains competitive. We evaluate two

variants. We employed implemented AoA‐RSSI(20 s)—using 20 s

for an AoA measurement—and AoA‐RSSI(45 s)—using 45 s for an
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AoA measurement–to compare with potential advantages with a

longer measurement duration selected in Cliff et al. (2018).

4.3 | Simulation setup

We describe the experimental settings and parameters employed in

our extensive simulation‐based study below. Notably, we employed

Digital Elevation Model data from Australia‐Geoscience (2022) with

1m resolution to create real‐world terrain conditions for our

experiments. We consider three terrain conditions with increasing

signal propagation complexity:

• Flat terrain: The data are obtained from Parkes, New South Wales

(NSW), where elevation changes from 233m to 239m. This terrain

is representative of a simple environment for localization since the

area has small elevation variations, and an accurate measurement

model can be easily obtained for state estimation.

• Hilly terrain: The hilly terrain is in Flinders Chase National Park,

South Australia (SA), where the elevation changes from 40 to

77m. The hilly terrain is more challenging than the flat terrain,

given the higher elevation variation.

• Mountain terrain: The mountain terrain is in Rugby, NSW, where

elevation changes from 595 to 704m. The mountain terrain is the

most challenging, given the large elevation variance and terrain

obstructions.

Settings: In each terrain, a UAV is tasked with localizing N = 20

mobile objects within a 2000 m× 2000m area. Each radio tag object

generates an RSSI measurement every 1 s. The initial state of UAV is

h πu = [1, 1, 80 + , ∕4]T1 0 , where h0 is the elevation of terrain at the

UAV's initial position. The UAV has a maximum velocity

v = 10m/smax and a rotation angular velocity of π∕3rad/s . A

cylindrical void region with radius ι = 50mmin and void probability

threshold P = 0.95v min is used to constrain the UAV's trajectories. For

the RSSI measurement model, dΓ̃( ) = 400 dBm, n = 4, σ = 4R dB are

used. For the bearing measurement model, σ = 0.095A rad is chosen.

The rotation time to collect RSSI measurements to generate a bearing

measurement is set to 20 s except when evaluating the AoA‐RSSI

(45 s) method in Cliff et al. (2018). The measurement and trajectory

planner evaluates actions every T = 30p s. For the Rényi divergence

reward, α = 0.1 is selected based on the study by Nguyen, Chesser

et al. (2019). The Bernoulli filter implementation, in all of the

methods, uses birth probability r = 1 × 10b
d−5, expected number of

clutters λ = 0.05 with clutter density c z( ) = [−120, 0]RSSI dBm and

c z π( ) = [0, 2 ]AoA rad for the clutter density of RSSI and AoA

measurement updates, respectively—here, a b[ , ] is continuous

uniform distribution with interval a b[ , ].

Detection probability: To simulate the limited sensitivity of the

radio receiver in practice, a sensitivity threshold h = −120Th dBm is

implemented such that any simulated radio signal received with signal

strength less than the threshold is discarded. Due to the effect of

limited receiver sensitivity, the detection probability can vary as the

state of UAV and radio tags changes. Therefore, given the RSSI

measurement model has Gaussian noise (9), we can express the

detection probability ⋅P ( )D of the radio signal as the following

equation for use in the Bernoulli update step expressed in (6):

( ) ( )∫P z h σ dz h h σx u x u x u( , ) = ; ( , ), = 1 − ; ( , ), ,
h

D

∞

R R
2

R Th R
2

Th

(36)

here, recall that (;) is the Gaussian CDF mentioned in (14).

Mobile radio tag objects: Radio tag objects to track and locate

were randomly placed in the testing environment with elevation

0.2m above ground. All objects were placed under vegetation with

depth L = 1v m to generate complex VHF signal propagation artifacts

and create challenging conditions for the proposed measurement and

trajectory planner operating without an accurate measurement model

and using an imprecise model instead. We modeled the object

dynamics using a wandering model (Nguyen, Rezatofighi, et al., 2019)

with transitional density given by

 Σq x x x Fx( ) = ( ; , ),t t t t t t−1 −1 −1 (37)

where F I= 3 with I3 being 3 × 3 identity matrix, Σ = diag

([2.5, 2.5, 0.0025] )mT 2.

We assume the radio tag carried by each object emits an on–off‐

keying pulse signal with a unique frequency as illustrated in Figure 3.

Therefore, each object can be uniquely identified by estimating its

signal frequency and this significantly reduces computation‐intensive

data association procedures. Recall, to reduce the computational

complexity of planning, the planning algorithm only selects optimal

actions to reduce the estimation uncertainty associated with the

object with the smallest Euclidean distance to the UAV. Once an

object is considered localized, it will no longer be considered by the

path‐planning algorithm to control measurement and trajectory‐

planning actions. An object is considered localized when the

estimation uncertainty has reduced to a sufficiently small level; for

this, the determinant of its estimated covariance on the x y− ‐axis,

Nth, being less than or equal to 2 × 10 m4 4 was used in our

simulations. We only use the x y− ‐axis to determine the termination

condition for tracking because, generally, elevation resolution is not

as important and to provide a fair comparison with the AoA method,

which is not able to obtain elevation measurements.

Performance measures: For each simulation, 100 Monte‐Carlo

runs were performed. Given the key objectives of the UAV task, we

used the following metrics to evaluate and compare the performance

of each method.

• Estimation error: We are interested in the accuracy of estimating

the location of wildlife. Hence, we use mean error of N objects

given by x x y y∑ ( − ) + ( − )N i
N i i i i1
=1 truth

( )
est
( ) 2

truth
( )

est
( ) 2

.

• Localization time: We want to minimize the flight time to locate

radio‐tagged wildlife since a UAV has limited onboard battery

capacity and returning the UAV to the home base and changing

batteries for a new mission is undesirable. Therefore, we measure

the total time the UAV spends in the air to locate all objects.
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4.4 | Simulation experiments and results

Robustness under various terrain conditions: These experiments aim to

quantify advantages in terms of localization time and accuracy under

different environments based on the information‐based reward functions

under investigation. We examined the performance of our proposed

method in three distinct terrains: (i) flat, (ii) hilly, and (iii) mountain terrains.

Figure 9 shows the Monte‐Carlo simulation results in flat, hilly,

and mountain terrains. Our proposed method, Meta‐Pilot, is able to

locate all 20 radio tags consistently and faster—see localization times

—than all AoA‐based methods—cAoA(20 s), AoA‐RSSI(20 s), and AoA‐

RSSI(45 s)—across all terrain conditions while maintaining low

localization errors. Then, given the action choices the planner is able

to make over the relatively flat terrain, where Imp‐RSSI methods are

expected to perform well, our proposed method was able to acquire

the location of all 20 radio tags as fast as the RSSI‐based method

whilst being significantly faster than AoA‐based methods and without

compromising localization accuracy.

As the terrain complexity increases (hilly to mountain terrains),

our method is able to select AoA measurement actions when

necessary and achieve faster localization times than the Imp‐RSSI

and all AoA‐based methods without sacrificing localization accuracy.

In the mountain terrain, our planning for tracking approach

performed better than all of the AoA‐based methods—localization

error is the same or better whilst the localization time is the least.

Notably, in the mountain terrain, the Imp‐RSSI method is inherently

F IGURE 9 Comparing performance with mobile radio tags under various terrain conditions and measurement and planning methods with
different information‐based reward functions under investigation. Performance is compared between different methods in terms of localization
time and estimation error in flat, hilly, and mountain terrains over 100 MC runs where all of the planning methods use void‐constrained
trajectories. The time required for each AoA measurement is marked in brackets. (Note: Imp‐RSSI* method in mountain terrain uses a localization
termination condition of 2 × 10 m6 4.) Since the tighter uncertainty bound employed in other methods prevents localization of objects under less
informative RSSI measurements. AoA, Angle of Arrival; cAoA, compensated AoA; Imp‐RSSI, Imprecise RSSI; MC, Monte‐Carlo; NSW, New South
Wales; RSSI, Receiver Signal Strength Indicator; SA, South Australia.
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not able to meet the tight termination condition set at 2 × 10 m4 4

due to the complexity of the terrain. Therefore, a higher localization

termination condition (more relaxed) of 2 × 10 m6 4 is used for the

Imp‐RSSI method instead. As a result, we can observe the localization

error of the method to be significantly larger than other methods.

Impact of information‐based reward functions: In the series of

experimental results described in Figure 9, all three reward functions

resulted in approximately similar localization times and errors across

all of the measurement and planning methods across all of the

environments. However, Rényi divergence indicates a slight advan-

tage in localization time. Hence, Rényi divergence was selected as the

reward function to employ in field experiments.

Robustness under practical signal detection limitations: In this

experiment, we investigated the performance of our proposed

approach under different measurement detection probabilities to

understand the impact of our formation to address the practical

problems experienced by signal detectors—missed detections. The

parameters used in this experiment are those used for the hilly terrain

and Rényi divergence was used as the reward function.

Figure 10 shows the Monte‐Carlo‐based comparison results of

localization error between the Bernoulli filter and the particle filter

(employed in prior work) implementations as the detection probabil-

ity PD varies from 0.7 to 0.99. As PD decreases, the particle filter

implementation suffers from low measurement detections, leading to

high localization errors. In contrast, as expected, the Bernoulli filter

formulation with explicit consideration for measurement detection

probabilities is able to maintain a consistent localization accuracy

under different detection probabilities.

Effectiveness and impact of void‐constrained trajectories: The void

probability functional constraint applied to planning aims to

minimize the disturbances to wildlife by distancing UAV trajectories

away from the wildlife of interest. This experiment investigates the

performance impact of void constraints in terms of localization time

and error.

Figure 11 illustrates 100 trajectories for the UAV (generated over

100 MC trials) in a task to localize 20 mobile radio tags over the flat

terrain. With the void constraint applied, as shown in Figure 11b, the

flight path is changed noticeably as the UAV attempts to maintain a safe

distance to each radio tag. Since radio tags are mobile, only the initial

ground truth position and their path are marked in the figure; hence, the

mobility results in some trajectories appear to violate the void constraint.

Notably, without the void constraint, the planner is expected to select the

shortest path over the flat terrain, and the planner is expected to select

RSSI‐based measurement actions over AoA measurement actions,

resulting in the UAV moving directly toward each radio tag.

Figure 12 shows performance comparisons with and without

void constraints on flat, hilly, and mountain terrains. In these terrains,

with the void‐constrained trajectories, the localization time with

different reward functions all increase from 10%‐80% as the terrain

becomes more complex. The increase in localization time is an

expected result from both the void constraint trajectories and the

less informative RSSI measurement model in the mountain terrain.

F IGURE 10 Detection probability impact experiments—
comparison between Bernoulli filter (BF) formulation to explicitly
consider miss detections and particle filter under varying detection
probability PD for the tracking and localization task over the hilly
terrain with 100 Monte‐Carlo trials. The BF formulation is able to
maintain a low localization error across different detection
probabilities.

(a) (b)

F IGURE 11 Void impact experiments with mobile radio tags—UAV trajectory heatmap over 100 MC trials. (a) Without void constraint and
(b) with void constraint on the flat terrain. Green circles mark the initial ground truth location of mobile radio tags, while green paths denote the
traversal paths of the radio tags. MC, Monte‐Carlo; UAV, unmanned aerial vehicle.
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Due to the void constraint, the UAV needs to maintain a safe distance

to radio tags and therefore requires spending extra time to navigate

around each tag. In addition, in the mountain terrain, the RSSI

measurement model is less effective in improving state estimation,

while its use is conflicted by the need to maintain a minimum distance

under void‐constrained planning where the planner prevents the

UAV from approaching the target to improve estimates. Conse-

quently, the UAV is more reliant on time‐consuming AoA measure-

ments and this results in increased mission times for the localization

tasks in more complex terrains under void‐constrained planning. In

contrast, over the flat terrain, the RSSI measurement imprecision is

relatively low, and the measurements are more useful in improving

state estimations even in the presence of trajectory constraints

imposed by void preventing the approach of a UAV to a radio tag to

obtain more informative RSSI measurements.

In terms of localization error, we can observe void‐constrained

trajectories to lead to comparable performance with planning without

void constraints. Interestingly, the results in the mountain terrain

show that with void‐constrained trajectory and measurement

planning, the increased mission time to locate all radio tags has led

to slight improvements in median localization accuracy.

5 | CONSERVATIONBOT PROTOTYPE

An overview of the prototype system—ConservationBot—we built is

shown in Figure 13. We employed a commercial directional H‐type

VHF antenna (Telonics RA‐2AK) with 4 dBd gain and 10 dB front‐to‐

back gain ratio and a Software‐Defined Radio (SDR) to construct the

receiver. Given the significant advances in software‐defined radios,

F IGURE 12 Void impact experiments—Comparison with and without void‐constrained trajectories over 100 Monte‐Carlo trials in flat, hilly,
and mountain terrain.

(a) (b) (c)

F IGURE 13 (a) A system overview. The UAV state, control actions, and RSSI measurements are denoted by ut, at, and ZR, respectively; (b)
Lotek VHF wildlife radio collar used in field experiments; (c) ConservationBot. RSSI, Receiver Signal Strength Indicator; SDR, Software‐Defined
Radio; UAV, unmanned aerial vehicle; VHF, very high frequency.
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their small form factor, and low weight (giving us the ability to reduce

the payload of the sensor subsystem), we employed an SDR in our

receiver. We selected the USRP B200mini‐i because its lightweight

has an adequately large 70–6000MHz receiving frequency range,

high sensitivity, and large bandwidth for simultaneously detecting

multiple radio tags. We employed a DJI Manifold 2‐C companion

computer to implement the digital signal processing blocks of the

receiver's detector module as well as the planning for tracking and

localization algorithms.

The signal processing components of our receiver system are

shown in Figure 13a and are implemented using GNURadio. The SDR

is configured with a sample rate of 3MSs1. We implemented matched

filters to detect and measure the RSSI value of each radio tag. The

digitized RF data from the SDR are first channelized and down‐

sampled into a series of subchannels with 80 kHz bandwidth. In each

channel, the data are further decimated into 5 kHz bandwidth signal

to further improve SNR and reduce the computation complexity

needed in later processing stages. The data are then passed through a

matched filter, and the RSSI value is identified by using a peak

detector to generate the measurement ZR .

6 | FIELD EXPERIMENTS

We describe our extensive experimental regime to validate our

approach and evaluate the performance of our aerial robot in the

field. Our aims were to:

• Evaluate the detection range of the software‐defined receiver

architecture and hardware to understand the scanning range and

the effectiveness of the proposed compensated AoA detector

(Sections 6.1 and 6.2).

• Conduct field experiments to evaluate and compare performance

between the proposed measurement and trajectory planning for

tracking method with prior approaches (Sections 6.3.1 and 6.3.2)

and illustrate the effectiveness of our approach (Section 6.3.3).

• Conduct field experiments to demonstrate the significant advan-

tage provided by our aerial field robot over the manual methods

employed for wildlife tracking (Section 6.3.4) and evaluate the

proposed aerial field robot using southern hairy‐nosed wombats as

a model species (Section 6.4).

We used Lotek VHF wildlife radio collars in our field experi-

ments. The radio collar is designed for continuous operation of

18months, and as a result of limited onboard battery power, its

output power is limited to 200‐500μW . It transmits a 18‐ms pulse

every 1 s as illustrated in Figure 3.

6.1 | SDR receiver detection range

To understand the maximum detection range possible with our

receiver architecture and hardware components, we performed

multiple flights at a fixed 50‐m altitude and measured the RSSI and

SNR values of two radio collars placed at 0 and 0.5 m above the

ground. The 0.5‐m height was chosen to represent the typically

expected antenna height for above‐ground wombats and the 0‐m

height represents a more challenging scenario where wombats are at

the entrance of their warrens and are also representative of smaller

wildlife dwelling closer to ground level. During the flights, the

heading of the UAV and antenna is fixed and directed such that the

antenna's maximum gain is directed toward radio collars. Importantly,

the detection range demonstrates the scanning area possible for the

receiver for a typically low‐power, long‐life, VHF radio collar—such as

the one we used in our experiments—even without the ability of the

platform to travel and cover a larger territory.

The detection distance is determined by the maximum distance

between the receiver and radio collar when the received signal's SNR

reaches 15 dB. Here, we used a conservative SNR level to yield minimal

false alarms and a high detection probability. Consequently, in practice,

a significantly longer detection range can be achieved and successfully

employed given the capability of the Bernoulli filter formulation to

accommodate false alarms and miss detections in real‐world settings.

Figure 14a shows the measured gain pattern ⋅G̃ ( )a of the antenna

used in our system; the deviations from an ideal pattern in free space

are expected as the gain of the antenna is modified once mounted

onto the UAV. Hence, the measured pattern is used in the

measurement models we employ. Figure 14b shows the resulting

detection range measurements. For the radio collar placed 0.5 m

above ground, the signal can be reliably detected up to 2000m. As

the height of the radio collar decreases, the system detection range

reduces as expected, but even when the collar is placed directly on

the ground, the range consistently exceeds 1000m.

6.2 | Compensated AoA detector evaluation and
measurement model parameter estimation

The AoA measurement errors can result from the accuracy of the

UAV heading at the time of each RSSI detection since each AoA

measurement requires the UAV to perform a full rotation and weak

(a) (b)

F IGURE 14 (a) The measured gain pattern of the antenna used
by the receiver. (b) Detection range experiment: SNR at varying
distances for radio collars placed at 0.5 and 0m above the ground
measured at or above 15 dB SNR. SNR, signal‐to‐noise ratio.
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radio collar signals; for instance, at longer distances, we can expect

the number of RSSI detections to reduce and potentially increase the

AoA errors.

To validate the effectiveness of our proposed compensated AoA

measurement method and determine the AoA measurement noise

variance, we collected 10 AoA measurements with a stationary radio

collar at distances from 45 to 1509m while flying the UAV at a fixed

altitude of 50m. Figure 15 illustrates the AoA measurement errors

and the percentage of detections. As shown in Figure 15b, at

distances larger than 1000m, the correlation coefficient‐based AoA

measurement calculation produced outlier measurements with

significant errors while the cross‐correlation methods shown in

Figure 15c generate AoA measurements with relatively large

variance. But the measurements are less sensitive to the detection

rate. The results in Figure 15d demonstrate our proposed compen-

sated AoA measurement method described in (17); we can observe

the errors to be reasonably consistent across varying distances with

small variances; notably, with the exception of one outlier at 45m,

the majority of errors are within 10°. Although the variation of AoA

measurement noise can be modeled as a function of correlation

coefficient (Cliff et al., 2015) or distance, we opt for a fixed variance

Gaussian noise model since the variation of AoA error with increasing

distance is observed to be minimum with the compensated detector

and detailed modeling would likely yield only marginal improvements.

6.3 | Field experiments

We conducted our field experiments to evaluate our prototype

ConservationBot implementation over a more challenging, hilly

terrain. The field experiments were conducted in the Inman Valley,

approximately 10 km from Victor Harbor, SA, Australia—the area that

the field experiments were conducted in was 40.86 ha in size. The

terrain at this location is hilly and vegetated with remnant eucalypt

forest to the height of approximately 12m interspersed with thick

shrubs to the height of approximately 1m, making it difficult for

humans to traverse and an ideal environment to test our system.

Figure 16 shows the contour map of the field test area.

6.3.1 | Localization performance

The first set of field trials was designed to evaluate the localization

performance of our proposed Meta‐Pilot method. For comparison,

(a)

(b)
(c)

(d)

F IGURE 15 AoA measurements statistics at different distances. (a) Percentage of RSSI measurements collected during each AoA measurement,
the shaded area shows one standard deviation. Each data point was built using AoA measurements of size 10. (b) AoA measurement error using
correlation coefficient (15), error close to 180° can be observed when radio collar is above 1 km. (c) AoA measurement error using cross‐correlation
(16), no significant outlier is observed but overall has higher variance than (c) when radio collar distance is less than 1 km. (d) AoA measurement error
using (17). AoA, Angle of Arrival; RSSI, Receiver Signal Strength Indicator.
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we selected Imp‐RSSI and cAoA(20 s) measurement methods without

measurement planning. Here, Imp‐RSSI method is able to account for

uncertainty in the measurement model resulting from the hilly terrain

and we can expect the approach to provide lower localization times

due to the fast measurement acquisition times; the cAoA(20 s) with

compensated AoA measurements minimize outliers and we expect

the approach to provide improved localization performance because

AoA measurement is less affected by terrain condition. (Please see

Section 4.2 for detailed descriptions of each method).

We selected a dispersed but stationary set of radio collars

(placed at fixed locations). This setting not only ensures the safety of

the personnel involved but also allows us to design a consistent and

repeatable experimental setting for conducting multiple missions to

compare different approaches. A radio collar or radio‐collared wildlife

was considered localized if its location uncertainty, evaluated by the

determinant of its estimated covariance Nth is sufficiently small; we

employed N ≤ 1 × 10 mth
5 4 and an imprecision range of [−16, 9]dB.

The ConservationBot was tasked to take off to 50m above the

launch position and execute the measurement and trajectory

planning for the tracking algorithm to localize all radio‐tagged

objects.

Table 1 summarizes the time to complete missions and

localization error results for robotic systems using only our proposed

Imprecise RSSI model—Imp‐RSSI—or AoA method with our

proposed compensated AoA detector—cAoA(20 s)—in relation to

our proposed Meta‐Pilot. We found our proposed approach, Meta‐

Pilot, to provide the best set of consistent localization and total

mission duration results (the set of missions with Meta‐Pilot achieves

the lowest mean error with the smallest standard deviation and

shortest mean localization time with the smallest standard deviation).

Unsurprisingly, as a rapid, yet simple, measurement acquisition

method, the mean localization time of Imp‐RSSI is significantly better

than the cAoA(20 s) method. Notably, we observed a similar result for

comparable terrains (the flat and hilly terrains) in our simulation study

because the proposed imprecise RSSI model is able to account for the

measurement model uncertainty and improve localization time and

accuracy (see Figure 9). However, the ability to flexibly employ more

robust AoA measurement planning actions in Meta‐Pilot to reduce

object state estimation uncertainty achieved much better localization

accuracy (highest mean and smallest standard deviation demonstrat-

ing consistent performance) and, on average, shorter, more consist-

ent (smaller standard deviation) mission completion times compared

with Imp‐RSSI.

In contrast, as expected, whilst also confirming our results in the

simulation study for the hilly terrain, Meta‐Pilot significantly out-

performed the cAoA(20 s) method in terms of localization time in field

trials. Meta‐Pilot required only one‐third of the time on average to

successfully locate the four stationary radio collars with better mean

localization accuracy compared with the cAoA(20 s) method. AoA

measurements are robust to impacts from the multiplicity of VHF signals

over complex terrains but it is a costly action for the robot to perform in

terms of both time consumed and energy expended over an in situ

rotation. But, our Meta‐Pilot's ability to dynamically decide when to

action AoA measurements significantly minimized the cost implications

F IGURE 16 Contour map of hilly terrain field experiment site,
Inman Valley, South Australia.

TABLE 1 Comparison of localization performance for stationary and mobile objects in a hilly environment where our ConservationBot was
configured with: (i) our proposed imprecise RSSI model alone; (ii) compensated AoA detector alone as described in Section 4.2; and (iii) our
proposed measurement and trajectory planner with the imprecise RSSI model and compensated AoA detector.

Method Setting Trials Error σ±1 (m) Time σ±1 (s)

Measurement and trajectory planner Stationary radio collars 8 35 ± 9 231 ± 23

(Meta‐Pilot)

Imprecise RSSI only Stationary radio collars 8 43 ± 11 245 ± 30

(Imp‐RSSI)

Compensated AoA only Stationary radio collars 8 40 ± 13 745 ± 123

(cAoA(20 s))

Measurement and trajectory planner Mobile and stationary 8 45 ± 18 230 ± 83

(Meta‐Pilot) radio collars

Note: Bold values indicate the best results.

Abbreviations: AoA, Angle of Arrival; RSSI, Receiver Signal Strength Indicator.
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of employing the more robust AoA measurements whilst still benefiting

from the measurement method. Consequently, Meta‐Pilot achieves a

significant reduction in mission completion times in contrast to the cAoA

(20 s) method but without impacting localization accuracy.

6.3.2 | Tracking and localizing mobile objects

In this set of field experiments, we employed the same settings used

in Section 6.3.1, with the exception of having two of the four VHF

radio collars mobile to validate the capability of ConservationBots to

track and locate mobile radio collars. Here, two VHF radio collars

were carried by human volunteers tasked with performing a

wandering motion from their starting locations at approximately

1‐2m/s. The trajectory of the mobile objects was captured using a

phone‐based GPS data logger and later compared with the reported

object location to obtain the localization error. Table 1 summarizes

the results for localizing mobile objects. The results demonstrate that

our proposed Meta‐Pilot can track and locate mobile and stationary

objects. When comparing mobile objects to the results for localizing

only stationary objects, we observed a decrease in accuracy and a

slightly larger variation in localization times as the moving radio

collars can impact the time to reduce the uncertainty associated with

estimated positions to a desirable level whilst also planning for

void‐constrained trajectories.

6.3.3 | Minimizing disturbances with void‐
constrained trajectories

We present two missions as examples to illustrate the progression of

the tracking and localization task and the manner in which the void‐

constrained trajectories are able to maintain a safe distance from the

VHF radio collars of interest. Figure 17a depicts the evolution of

belief densities for each radio collar over time. From these snapshots,

we can observe a typical trajectory and behavior as a result of the

void constraints. At time t = 80 s, the UAV is focusing on locating

collar 2. Shortly after collar 2 is located, the UAV proceeds to

navigate toward the next closest collar (collar 1). We can observe that

during this process, the majority of collar 2's belief density

(represented by orange particles) remains outside the void region of

the UAV (green dashed circle). After time t = 150 s, the UAV finishes

locating collar 1 and subsequently heads toward collar 3 while

locating collar 4 during the process and returns to the home‐base

location after all collars have been found at time t = 252 s. Here the

effect of void constraint becomes more prominent as illustrated by

the UAV navigating around collar 1.

Figure 17b shows another instance of intermediate belief

densities for the task of locating two stationary (collars 1 and 2)

and two mobile (collars 3 and 4) VHF radio collars. A similar planning

strategy illustrated in Figure 17a can also be observed here. At time

t = 85s the UAV moves toward the collar determined to be the

(a)

(b)

F IGURE 17 Instances of intermediate belief density representing the estimated location of radio collars for two scenarios selected from our
field trials: (a) localizing four stationary VHF radio collars and (b) localizing two stationary collars (1 and 2) and 2 mobile collars (3 and 4). The
effect of void‐constrained trajectories can be observed as the UAV navigates around (unlocalized) radio collars to maintain a safe distance. Here
we can observe the convergence of belief densities of all radio collar location estimates and the operation of the planner generating trajectories
to maintain the void constraint. UAV, unmanned aerial vehicle; VHF, very high frequency.

CHEN ET AL. | 463

 15564967, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22270 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



closest (collar 2). However, due to the void constraint, the UAV is

unable to move too close to collar 2 and instead plans a trajectory

around collar 2 as seen at time t = 120 s. Then, after both collars 1

and 2 are located, the UAV traverses toward collar 3 and completes

locating all of the collars at time t = 190 s. These results from field

experiments demonstrate that our proposed planning method is able

to locate all stationary or mobile radio collars while maintaining a safe

distance.

6.3.4 | Comparisons with a human expert

To demonstrate the benefits of the autonomous method of tracking

wildlife we developed here using our Conservationbot, compared

with traditional wildlife tracking methods (involving a field scientist

trekking, often through difficult terrain, and carrying bulky

radio‐telemetry equipment), we invited an expert conservation biologist

with over 20 years wildlife tracking experience, to compete with our

robotic platform. To ensure comparable settings, four stationary radio

collars were used in this experiment. The human expert was given the list

of radio collar frequencies at the start but had no prior knowledge of the

positions of the radio collars. The human expert and the ConservationBot

set off from the same starting position.

The localization time for each radio collar and the traveled path

of the human expert is shown in Figure 18. As expected, the results

show a significant difference in search and localization time

between the manual method and the ConservationBot, demonstrat-

ing the effectiveness of the ConservationBot as a field robot for the

task. Human expert, first localized collar 2 after 13 min of search

time (notably, during this time‐lapse, the ConservationBot has

located all 4 radio collars and returned to the home base). Due to

the terrain and vegetation coverage impacts on VHF signal

propagation, collar 3 was selected by the human expert as the next

collar to localize, although collar 1 was closer. Completing the

localization task took 37 min; this was significantly higher than the

4 min required for our ConservationBot. Notably, the equipment

used by the human tracker was superior to that employed on the

ConservationBot; specifically, a three‐element Yagi antenna with a

higher gain and front‐to‐back ratio, compared with the lower gain

two‐element model used by the ConservationBot, along with a more

sensitive radio receiver—an Australis 26K radio receiver—was used

by the human expert.

6.4 | Field trials with southern hairy‐nosed
wombats

We participated in a field experiment where our ConservationBot

was deployed to localize radio‐tagged wombats in a conservation

project. The trials were performed near Swan Reach, SA, Australia

shown in Figure 19. A total of six southern hairy‐nosed wombats (L.

latifrons) were captured, radio‐tagged, and released before the trials.

F IGURE 18 Results from conducting the tracking task with a
human expert with over 20 years of field experience using the manual
method with four stationary VHF radio collars in a hilly environment.
Radio collars are found in the order of 2, 3, 4, 1 by the expert human
tracker. Completing the localization task took 37min for the human
expert and only 4min for our ConservationBot. VHF, very high
frequency.

F IGURE 19 (a) Photograph showing a southern hairy‐nosed wombat captured and released after radio tagging into the habitat at Swan
Reach in Australia. (b) Main figure: Current (dark color) and extrapolated (light color) distribution of hairy‐nosed wombats—based on Figure 1 in
Swinbourne et al. (2016). Inset: Map of the terrain at Swan Reach in Australia. The ground truth location of tagged wombats is marked by “×.”

464 | CHEN ET AL.

 15564967, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22270 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The terrain at this location is comprised of remnant mallee vegetation

interspersed with native grasslands, eucalyptus trees and is, thus,

representative of flat terrain with less than 5m elevation variations

across the site as shown in Figure 20.

Trials were conducted during the daytime to comply with

university health and safety regulations, legal and risk implications,

as well as regulations and procedures governing the testing of

autonomous aerial vehicles. Southern hairy‐nosed wombats, a

nocturnal species, are usually less active and located in warrens

underground (Taggart et al., 2020) during daylight hours. While this

behavior meant that wombats were mostly stationary, the radio

signal would be greatly attenuated by the ground resulting in a

significant reduction in the maximum detection range of signals.

These attributes provided a very challenging setting for a field trial.

The UAV was launched to a fixed altitude of 50m and tasked to

localize all of the detectable radio‐tagged wombats. Subsequently,

manual tracking was undertaken to determine the ground truth of

each wombat's location and compare it to the reported location of

our system to determine the reported accuracy.

Table 2 presents a quantitative summary of the results of our

field experiments. Five missions were carried out to localize two radio

collars found to be detectable from Wombat dwelling underground.

With the exception of the last mission, we were able to localize both

wombats within an average of 252 s with a mean localization error of

40m. In mission 5, after 200 s, the signal from Wombat 2 could no

longer be detected before it was localized. We suspect that the

wombat moved deeper underground, resulting in further signal

attenuation. The intermediate belief density (particle distributions)

from mission 1 is illustrated in Figure 21 and demonstrates the

effectiveness of the information‐theoretic planning objective to

reduce the uncertainty of the estimated location of wombats.

6.5 | Ethics and regulatory compliance

This study was conducted under the University of Adelaide Animal

Ethics permit number S‐2018‐112a. All of the flights were under-

taken with the Civil Aviation Safety Authority (CASA, Australia)

approvals and followed the safety protocols mandated by The

University of Adelaide as such our experiments were designed

F IGURE 20 Contour map of wombat habitat terrain in Swan Reach,
South Australia.

TABLE 2 Results from field trials where the ConservationBot
was deployed to track and locate underground radio‐tagged
southern hairy‐nosed wombats in a conservation project.

Error (m) Time (s)
Wombat 1 Wombat 2 Mean Total

Mission 1 48.4 8.0 28.2 203

Mission 2 43.4 62.2 52.8 291

Mission 3 49.4 25.7 37.5 231

Mission 4 31.5 52.6 42.1 281

Mission 5a 35.1 84.9 – 200

Meanb 43.2 37.1 43.3 252

aMission did not locate Wombat 2 due to loss of detections from Wombat

2's very high frequency radio collar tag, potentially as a result of the wombat
moving deeper underground during the trial.
bExcluding mission 5.

F IGURE 21 Intermediate distributions of belief density representing the estimated location of the underground VHF radio‐collared southern hairy‐
nosed wombats. The UAV first moves towardWombat 1 (t = 50–90). Then moves aroundWombat 1 due to the void‐constrained trajectory planner and
navigates to Wombat 2 after Wombat 1 is localized (t = 203). The□ △/ denotes the truth—determined by manual tracking methods—and estimated
wombat positions by the ConservationBot, respectively; the green dashed line denotes the void region employed, and the solid black line denotes the
trajectories of the UAV. UAV, unmanned aerial vehicle; VHF, very high frequency.
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around the University of Adelaide and CASA regulations governing

the conduct of UAV research. The two pilots conducting and

supervising the experiments had a Remote Pilot License.

7 | LESSONS LEARNED

This study describes, for the first time, the development and

optimization of an aerial robotic system for the tracking and

monitoring of wildlife across a variety of vegetation and terrain

conditions. We present innovative solutions that address practical

and technical issues impacting radio tag detection—speed, accuracy,

and reliability, and evaluate the proposed algorithms, their integra-

tion, and operation in field conditions. In this section, we reflect upon

our observations and lessons learned during our extensive field

experiments as well as potential future work.

Given the significant improvements to the detection range of the

software‐defined VHF receiver, the maximum search area of our

system is primarily limited by its flight time. For a given UAV

platform, flight time is dependent on the weight of the payload. The

total mass of the payload of the sensing and computing hardware is

550 g, where the antenna we employed contributes to more than

45% of the total payload. To reduce the mass of the payload, and

increase flight times, a customized directional antenna design with

lighter materials can be investigated in further research.

Our software systems onboard the UAV employed the existing

915MHz telemetry channel used for communication between the

UAV and the ground station to provide data for the localization and

planning algorithm executed on the ground control station as well as

the transmission of control action to the UAV. The choice of

915MHz provided a superior range compared with the 2.4 GHz

wireless link used in Nguyen, Chesser et al. (2019) and removed the

need for an additional transceiver onboard the UAV. We found

the exploitation of the telemetry channel to be convenient and use

the full capability to monitor the UAV operations and meet regulatory

compliance requirements with the benefit of being able to use open‐

source hardware and software to support the development of the

robotic platform. But, we observed a packet drop rate of around 10%,

predominantly due to the limited communication channel quality.

Although executing the algorithms onboard the companion computer

for better reliability and ease of use addressed the problem, for safety

reasons, in the testing phase, we could not employ this mode of

operation.

The software‐defined radio receiver design allows us to easily

facilitate the simultaneous detection of multiple radio collar signals at

different frequencies whilst facilitating the realization of the receiver

in a small form factor and a lightweight hardware realization. The

software programmable hardware simplifies the reconfiguration on

the fly, such as receiver SNR and radio tag frequencies. Despite the

advances made compared with previous software‐defined receiver

designs (Nguyen, Chesser, et al., 2019) to increase the scanning

range, tracking underground radio‐collared wildlife was a challenging

proposition. For our detector, a −70 dBm SNR threshold is used to

minimize false detections (false alarms); this setting achieved a

scanning range of over 2 km. However, as shown in 6.4, detecting

very weak signals from underground VHF radio emitters due to

significant signal attenuation through the soil was challenging in this

setting.

Reducing the detector threshold could increase the probability of

weak signals being detected, but it will also increase the probability of

receiving false alarms. Notably, our current detector implementation

only reports up to one peak detection per radio tag transmit period;

whenever a false alarm is reported, the truth signal (if present) will be

suppressed, which also effectively reduces the detection probability.

To allow using a lower SNR to improve the detection range further,

the detector architecture can be modified to report all signal

detection peaks (from the peak detection stage in our detector).

This will allow us to fully utilize the Bernoulli filter's ability to handle

object state estimation in the presence of multiple false alarms in

addition to missed detections and, therefore, increase the capability

of our estimation algorithm to function under increased false alarms.

Consequently, the operating range of our ConservationBots will

effectively increase—more importantly, enable the tracking and

localization in the presence of weak VHF radio collar tag signals,

such as those from underground dwelling animals.

8 | CONCLUSION

We have validated the capability of our proposed approach to rapidly

localize multiple mobile objects in different environments through

extensive simulation‐based experiments and field experiments with a

prototype robotic platform—ConservationBot. Further, we have

shown that our approach, which utilizes both RSSI and AoA

measurements and performs measurement and trajectory planning

to locate radio‐collared wildlife, delivers consistently fast, robust, and

better performance over traditional RSSI‐only or AoA‐based ap-

proaches, even when the proposed imprecise RSSI model formulation

and compensated AoA detector are employed with previous

approaches. Importantly, the ability to plan for measurements allows

the robot to benefit from robust AoA measurements without the

impact of the increased time needed to complete a mission. Although

the use of the imprecise likelihood method is not a perfect

replacement for the precise and correct likelihood function, it greatly

simplifies the difficult task of modeling and building the often

complex likelihood model significantly impacted by environmental

conditions.

Our field experiments confirm that autonomous aerial robots

capable of fast, robust tracking of multiple wildlife can provide

benefits over the labor‐intensive manual tasking to gather precise

information from wildlife for their conservation and management.
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