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Abstract

Autonomous aerial robots provide new possibilities to study the habitats and behaviors of endan-

gered species through the efficient gathering of location information at temporal and spatial granu-

larity not possible with traditional manual survey methods. We present a novel autonomous aerial

vehicle system—TrackerBots—to track and localize multiple radio-tagged animals. The simplicity

of measuring the received signal strength indicator (RSSI) values of very high frequency (VHF)

radio-collars commonly used in the field is exploited to realize a low cost and lightweight tracking
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platform suitable for integration with unmanned aerial vehicles (UAVs). Due to uncertainty and the

non-linearity of the system based on RSSI measurements, our tracking and planning approaches in-

tegrate a particle filter for tracking and localizing and a partially observable Markov decision process

(POMDP) for dynamic path planning. This approach allows autonomous navigation of a UAV in a

direction of maximum information gain to locate multiple mobile animals and reduce exploration

time; and, consequently, conserve on-board battery power. We also employ the concept of a search

termination criteria to maximize the number of located animals within power constraints of the aerial

system. We validated our real-time and online approach through both extensive simulations and field

experiments with five VHF radio-tags on a grassland plain.

1 Introduction

Understanding basic questions of ecology such as how animals use their habitat, their movements and activities are

necessary for addressing numerous environmental challenges ranging from invasive species to diseases spread by

animals and saving endangered species from extinction. Conservation biologists, ecologists as well as natural resource

management agencies around the world rely on numerous methods to monitor animals. Traditional methods using

radio-tagging species of interest (Cochran and Lord Jr, 1963; Kenward, 2000) as well as more recent vision-based

sensors (Selby et al., 2011; Olivares-Mendez et al., 2015) or infrared (IR) based sensors (Zhou, 2013; Christiansen

et al., 2014; Gonzalez et al., 2016; Ward et al., 2016) are employed for these tasks. IR-based sensors are sensitive

to environmental temperature and become less reliable when they are used outdoors, especially during day-times in

summer months (Zhou, 2013). In general, vision-based approaches are less effective when animals are camouflaged

and are susceptible to visual occlusions, e.g. by grass, shrubs and even other animals. Most significantly, due to the

difficulty of automatically recognizing individual animals using vision/IR based approaches, tracking multiple animals

with these sensors require dealing with the very challenging problem of data association (Bar-Shalom, 1987; Stone

et al., 2013). Often, conservation biologists need tools to track and monitor a specific set of individual animal species;

for example, individuals of a reintroduction species into a natural habitat. This becomes difficult to achieve in the

presence of occlusions and data associations problems of IR/vision based approaches. Thus, capturing and collaring

concerned species with Very High Frequency (VHF) radio tags and the subsequent use of VHF telemetry or radio

tracking is the most important and cost-effective tool employed to study the movement of a wide range of animal

sizes (Wikelski et al., 2007) in their natural environments (Kays et al., 2011; Thomas et al., 2012; Tremblay et al.,

2017; Webber et al., 2017).
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Figure 1: TrackerBots: An overview of the UAV tracking platform with its sensor system.

However, the traditional method of radio tracking is not without its problems. Tracking radio-collared animals typi-

cally requires researchers to trek long distances in the field, armed with cumbersome VHF radio receivers with hand-

held antennas and battery packs to manually home in on radio signals emitted from radio-tagged or collared animals.

Consequently, the precious spatial data acquired through radio tracking come at a significant cost to researchers in

terms of manpower, time and funding. The problem is often compounded by other challenges, such as low animal

recapture rates, equipment failures, and the inability to track animals that move into inaccessible terrains. Further-

more, many of our most endangered species also happen to be the most difficult to track due to their small size,

inconspicuousness, and location in remote habitats.

Automated tracking and location of wildlife with autonomous unmanned aerial vehicles (UAVs) can provide new

possibilities to better understand ecology and our native wildlife to safeguard biodiversity and manage our natural

resources cost-effectively. We present a low-cost approach capable of realization in a lightweight payload for trans-

forming existing commodity drone platforms into autonomous aerial vehicle systems as shown in Fig. 1 to empower

conservation biologists to track and localize multiple radio-tagged animals.

The main contribution of our work is a new autonomous aerial vehicle system for simultaneously tracking and local-

izing multiple mobile radio-tagged animals using VHF radio-collars, commonly used in the field. In particular:

• Our system is realized in a 260 g payload suitable for a multitude of low-cost, versatile, easy to operate

multi-rotor UAVs. Our lightweight realization—of less than 2 kg system mass—is achieved through a new

sensor design that exploits the simplicity of a software-defined radio architecture for capturing received signal

strength indicator (RSSI) value from multiple VHF radio tags and a compact, lightweight VHF antenna

geometry. The lightweight design is significant for achieving longer flight times on a given UAV as well as
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making the technology more accessible in jurisdictions, such as Australia, where systems under 2 kg can be

flown without a pilot license.

• We formulate a joint tracking and path planning problem to realize a real-time and online autonomous system.

Due to the noisy, complex and nonlinear characteristics of RSSI data, we integrate a sequential Monte Carlo

implementation of a Bayesian filter, also known as particle filter (PF), for real-time tracking and localization

jointly with a partially observable Markov decision process (POMDP) for modeling a path planning decision

process. We evaluate information based reward functions to evaluate control actions for path planning. We

use Réyni divergence between prior and posterior estimates of target locations for autonomy and dynamic

online path planning to minimize flight time while maximizing the number of located animals. Further,

our formulation considers the trade-off between location accuracy and resource constraints of the UAV, its

maneuverability, and power constraints to develop a practical solution.

• We validate our method through extensive simulations and field experiments with mobile VHF radio-tags.

In particular, we conducted: i) over 10 manual flights to both evaluate and measure the performance of our

sensor system; and ii) we performed 20 autonomous flights under two different settings with a mix of target

dynamics to demonstrate the robustness and scalability of our approach. To the best of our knowledge, ours is

the first demonstration of an autonomous online aerial robot system for tracking and locating multiple mobile

VHF radio-tags in real-time.

• In order to support researchers in the field and facilitate the adoption of new technologies in the field, we

provide a complete design description of TrackerBots, including a repository of source code to develop our

fully autonomous system 1

2 Related Work

Our problem is embedded in the development of a UAV planning method for tracking multiple mobile radio-tagged

objects using the simplicity of received signal strength measurements. Therefore: i) we review studies in the field

of received signal strength measurement based tracking with a specific focus on methods developed for UAVs and

wildlife tracking; ii) we review multi-target tracking methods since our problem involves tracking multiple radio-

tagged targets; and iii) we focus on related work in the field of tracking radio-collared animals using UAVs.

Received signal strength indicator (RSSI)-based Tracking: This method is studied in localizing objects in both

indoor and outdoor environments. The approach relies on using the strength of a radio signal from an emitter cap-
1see: https://github.com/AdelaideAuto-IDLab/TrackerBots
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tured by a receiver to estimate, for example, the distance to the emitter. Related methods with possible applications

to wildlife tracking can be found in the use of wireless sensor networks (WSN) for tracking a radio wave emitter.

In (Caballero et al., 2008; Särkkä et al., 2014) a mobile beacon is localized by a fixed number of sensor nodes with

known locations. The first automated VHF telemetry measurement system was reported in (Kays et al., 2011). A

set of six ground-based antenna arrays deployed in a rainforest localized radio-tagged animal locations using bearing

estimates obtained from signal strength measurements made by ground-based stations. These methods are advanta-

geous for meeting long-term monitoring needs. However, the scale of the fixed and powered infrastructure required

prior to a tracking task and the cost of deployment and maintenance over a large area make these approaches difficult

for general use cases. In contrast, a UAV based measurement method can provide greater flexibility and a lower cost

approach. Off-line estimations of a radio-tag’s location obtained from signal strength data logged from a UAV was

demonstrated in (Jensen et al., 2014). Developments in Software-defined radios (SDRs) have enabled new capabilities

to process multiple radio-tag signals simultaneously. Early efforts to demonstrate the possibility of incorporating SDR

architectures with a UAV to detect multiple transmitted signals from radio-tags were reported in (Dos Santos et al.,

2014; VonEhr et al., 2016). Notably, the studies above with UAVs were performed under the assumption of stationary

radio tags. The task of autonomously tracking and locating multiple mobile radio-tagged targets from a UAV remains.

Multi-target Tracking: The objective of multi-target tracking is to accurately estimate the unknown state of multiple

objects or targets using noisy observations. The basic problem in multi-target tracking is the unknown associations

between measurements and targets (Bar-Shalom, 1987). Traditional multi-target tracking formulations include mul-

tiple hypotheses tracking (MHT) filter (Blackman, 1986), the joint probabilistic data association filter (JPDAF) (Bar-

Shalom, 1987), and the probabilistic MHT (PMHT) filter (Streit and Luginbuhl, 1994). These approaches require

explicit associations between measurements and targets and propagate these hypotheses over time (Vo and Ma, 2006).

Another alternative approach which obviates explicit data associations uses finite set statistics (FISST) proposed by

Mahler based on Random Finite Set (RFS) theory. This formulation has gained considerable interest in recent years and

has lead to a number of new filtering solutions such as the probability hypothesis density (PHD) filter (Mahler, 2003),

the cardinalized PHD (CPHD) filter (Mahler, 2007a), the multi-object multi-Bernoulli (MeM-Ber) filter (Mahler,

2007b; Vo et al., 2009), the labeled multi-Bernoulli (LMB) filter (Reuter et al., 2014), and the generalized labeled

multi-Bernoulli (GLMB) filter (Vo and Vo, 2013; Vo et al., 2014). Since the radio-tagged methods provide an elegant

solution where each target can be uniquely identified by its transmitted signal, our problem does not suffer from the

data association problems mentioned above. Thus, we propose formulating a Particle Filter (PF) (Gordon et al., 1993)

for tracking radio-tags. This is similar to the approach in (Charrow et al., 2015). In contrast to the simulation-based

study of indoor robots in (Charrow et al., 2015), we design and implement our algorithm on a UAV with a sensor

system for obtaining RSSI-based measurements of multiple radio-tagged objects in outdoor environments.
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UAV-based Autonomous Localization and Tracking: Since this application is related to locating VHF collared

animals, we will focus on progress made towards the autonomous localization and tracking of multiple VHF radio-

tagged animals here.

Pioneering achievements in autonomous wildlife tracking have been made through simulation studies (Posch and

Sukkarieh, 2009) and experimentally demonstrated systems (Cliff et al., 2015; Körner et al., 2010; Tokekar et al.,

2010; Vander Hook et al., 2014) in recent years. In particular, the first demonstration of a UAV was presented in (Cliff

et al., 2015).

The recent approaches (Cliff et al., 2015; Vander Hook et al., 2014) for real-time localization of a static target (assum-

ing stationary wildlife) used wireless signal characteristics captured by a narrowband receiver to estimate location;

in particular, the angle-of-arrival (AoA) of a radio beacon was determined using an array of antennas with the infor-

mation related to a ground-based receiver for location estimations. Although the approach can conveniently manage

topological variations in terrain, AoA systems require a large bulky receiver system and multiple antenna elements as

well as long observation times; 45 seconds per observation as reported in (Cliff et al., 2015). Moreover, the antenna

systems being mounted on top of the UAV (Cliff et al., 2015) is likely to lead to difficulty in tracking terrestrial animals

although being suitable for locating avian species dwelling in trees.

Summary: We can see that there are few investigations that have studied the problem of locating radio-collared

animals using autonomous robots. Although a system based on angle-of-arrival was recently evaluated to locate a

stationary animal, the development of a low-cost and lightweight autonomous system capable of long-range flights

and localization of multiple mobile radio-collared animals still remains.

We present an alternative approach exploiting RSSI based measurements because of the ability to use a simpler sens-

ing system on board commodity UAVs to realize lower cost and longer flight time UAVs for tracking and localizing

multiple animals. Together with a theoretical framework for joint tracking and planning, we design, build and demon-

strate a lightweight autonomous aerial robot platform. Our robot platform has the potential to provide a cost-effective

method for wildlife conservation and management. To the best of our knowledge, ours is the first demonstration of an

autonomous online aerial robot system for tracking and locating multiple mobile VHF radio-tags in real-time.

3 Tracking and Planning Problem Formulation

Real-time tracking requires an online estimator and a dynamic planning method. This section presents our tracking

and localizing formulation under the theoretical frameworks of a Bayesian filter for tracking and POMDP for planning
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strategy.

3.1 Tracking and localizing

For tracking, we use a Bayesian filter. It is an online estimation technique which deals with the problem of inferring

knowledge about the unobserved state of a dynamic system—in our problem, wildlife—which changes over time,

from a sequence of noisy measurements. Suppose x ∈ X and z ∈ Z are respectively the system (kinematic) state

vector in the state space X and the measurement (observation) vector in the observation space Z . The problem is

estimating the state x ∈ X from the measurement z ∈ Z or calculating the marginal posterior distribution p(xk |z1 :k )

sequentially through prediction (1) and update (2) steps.

p(xk |z1 :k−1 ) =

∫
p(xk |xk−1 )p(xk−1 |z1 :k−1 )dxk−1 , (1)

p(xk |z1 :k ) =
p(zk |xk )p(xk |z1 :k−1 )∫
p(zk |xk )p(xk |z1 :k−1 )dxk

. (2)

In the case of a nonlinear system or non-Gaussian noise, there is no general closed-form solution for the Bayesian

recursion and p(xk |z1 :k ) generally has a non-parametric form. Therefore, in our problem, we use a particle filter

implementation as an approximate solution for the Bayesian filtering problem due to our highly nonlinear measurement

model.

Particle Filter (PF): A particle filter uses a sampling approach to represent the non-parametric form of the posterior

density p(xk |z1 :k ). The samples from the distribution are represented by a set of particles; each particle has a weight

assigned to represent the probability of that particle being sampled from the probability density function. Then, these

particles representing the non-parametric form of p(xk |z1 :k ) are propagated over time. In the simplest version of the

particle filter, known as the bootstrap filter first introduced by Gordon in (Gordon et al., 1993), the samples are directly

generated from the transitional dynamic model. Then, to reduce the particle degeneracy, resampling and injection

techniques are implemented; a detailed algorithm can be found in (Ristic et al., 2004).

Measurement model: The update process of a PF requires the derivation of a likelihood of measurements. In our

problem, based on estimating a target’s—VHF radio tag’s—range from the receiver, we require a realistic signal propa-

gation model to obtain the likelihood of receiving a given measurement. We employ two VHF signal propagation mod-

els suitable for describing RSSI measurements in non-urban outdoor environments (Patwari et al., 2005; Jakes, 1974).
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Denoting h(x,u) as the RSSI measurement function between target x and observer (UAV) state u, we have:

i) Log Distance Path Loss Model (LogPath): The received power is the only line of sight power component transmit-

ted from a transmitter subjected to signal attenuation such as through absorption and propagation loss (Patwari et al.,

2005):

h(x,u) = P d0r − 10n log10(d(x,up)/d0) +Gr(x,u), (3)

where

• x = [ptx, p
t
y, p

t
z]
T is the target’s position; up = [pux, p

u
y , p

u
z ]T is the observer’s (UAV) position in Cartesian

coordinates; u = [up; θ
u] is the UAV’s state which includes its heading angle θu.

• d(x,up) is the Euclidean distance between the target’s position and UAV’s position.

• Gr(x,u) is the UAV receiver antenna gain which depends on its heading, its position, and target’s position

(details explained in Sec. 6.2).

• P d0r is received power at a reference distance d0.

• n is the path-loss exponent that characterizes the signal losses such as absorption and propagation losses and

this parameter depends on the environment with typical values ranging from 2 to 4 (Patwari et al., 2005).

ii) Log Distance Path Loss Model with Multi-Path Fading (MultiPath): The received power is composed of both

line of sight power component transmitted from a transmitter and the multi-path power component reflected from the

ground plane subjected to signal attenuation such as through absorption and propagation loss: (Jakes, 1974, p. 81):

h(x,u) = P d0r − 10n log10(d(x,up)/d0)

+Gr(x,u) + 10n log10(|1 + Γ(ψ)e−j4ϕ|),
(4)

where, in addition to terms in 3

• ψ is the angle of incidence between the reflected path and the ground plane.

• Γ(ψ) = [sin(ψ)−
√
εg − cos2(ψ)]/[sin(ψ) +

√
εg − cos2(ψ)] is the ground reflection coefficient with εg is

the relative permittivity of the ground.
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• 4ϕ = 2π4d/λ is the phase difference between two waves where λ is the wavelength and 4d = ((ptx −

pux)2 + (pty − puy )2 + (ptz + puz )2)1/2 − d(x,u).

In non-urban environments, received power is usually corrupted by environmental noise, with the assumption that the

noise is white, the total received power z = Pr(x,u) [dBm] is:

z = h(x,u) + ηP , (5)

where ηP ∼ N (0, σ2
P ) is Gaussian white noise with covariance σ2

P . Notably, even if RSSI noise is not completely

characterized by a white noise model, we found it practical to characterize the received noise with a white Gaussian

model as shown in Fig. 7.

We use data captured in experiments using our sensor system to validate the physical sensor characteristics Gr(x,u)

(see Sec. 4) and n defined by environmental characteristics, as well as estimate the propagation model reference power

parameter P d0r and noise σP (see Sec. 6.2).

Measurement likelihood: Based on (5) with Gaussian noise ηP , the likelihood of measurement zk, given target and

sensor position are xk and uk, respectively, at time k is

p(zk|xk,uk) ∼ N (zk;h(xk,uk), σ2
P ), (6)

where N (·;µ, σ2) is a normal distribution with mean µ and covariance σ2.

3.2 Path Planning

The UAV planning problem is similar to the problem of an agent computing optimal actions under a partially observ-

able Markov decision process (POMDP) to maximize its reward. (Kaelbling et al., 1998) have shown that a POMDP

framework implements an efficient and optimal approach based on previous actions and observations to determine

the true world states. A POMDP in conjunction with a particle filter provides a principled approach for evaluating

planning decision to realize an autonomous system for tracking.

In general, a POMDP is described by the 6-tuple (S,A, T ,R,O,Z) where S is a set of both UAV and target states

(s = {x,u} ∈ S), A is a set of UAV actions, T is a state-transition function T (s,a, s′) = p(s′|s,a) for a given

action a, R(a) is a reward function, O is a set of observations and Z is an observation likelihood Z(s,a,o) =

p(o|s,a) with s, s′ ∈ S is the current state and next state respectively, a ∈ A is the taken action and o ∈ O is the
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observation—i.e., measurement. The goal of a POMDP is to find an optimal policy to maximize the total expected

reward E[
∑k+H
κ=k+1 γ

κ−k−1Rκ(ak)] where H is look-ahead horizon steps, γ is the discount factor which serves as

the value difference between the current reward versus the future reward; ak is action at time step k and E[·] is the

expectation operator (Hsu et al., 2008).

The reward function can be calculated using different methods such as task-driven or information-driven strategies.

When uncertainty is high, the information gain approach is preferable to reduce a target’s location uncertainty (Beard

et al., 2017); hence, we used this method to calculate our reward function. There are several approaches to evaluate

information gain in robotic path planning such as Shannon entropy (Cliff et al., 2015), Kullback-Leibler (KL) diver-

gence or Rényi divergence (Hero et al., 2008). We adopted the approach in (Ristic, 2013; Ristic and Vo, 2010) to

implement Rényi divergence as our reward function since it fits naturally with our Monte-Carlo sampling method.

Here, Rényi divergence measures the information gain between prior and posterior densities (Beard et al., 2017; Ristic

and Vo, 2010):

R(i)
k+H(ak) =

1

α− 1
log

∫ [
p(xk+H |z1:k)

]α [
p(xk+H |z1:k, z(i)k+1:k+H(ak))

]1−α
dxk+H , (7)

where α ≥ 0 is a scale factor to decide the effect from the tails of two distributions. The prior density p(xk+H |z1:k)

is calculated by propagating current posterior particles sampled from p(xk|z1:k) to time k + H using the prediction

step (1). The posterior density p(xk+H |z1:k, z(m)
k+1:k+H(ak)) where z

(m)
k+1:k+H(ak) is the future measurement set that

will be observed if action ak ∈ Ak is taken; this is calculated by applying both prediction (1) and update steps (2) up

to time k + H . However, using Bayes update procedure is computationally expensive and prohibitive in a real-time

setting. Instead, we implement a computationally efficient approach using a black box simulator proposed in (Silver

and Veness, 2010) along with the Monte Carlo sampling approach. Hence, the problem transforms to find an optimal

action a∗k ∈ Ak to maximize total expected reward:

a∗k ≈ arg max
ak∈Ak

1

Ms

k+H∑
t=k+1

Ms∑
m=1

γt−kR(m)
t (ak), (8)

where Ms is the number of future measurements.

3.3 Multi-targets Tracking

The particle filter proposed in Sec. 3.1 can be extended to multi-target tracking (MTT). However, MTT normally deals

with the complex data association problem where it is difficult to determine which measurement belongs to which

11



Figure 2: a) The communication channels between UAV and the ground control system with its main software compo-
nents and protocols. The solid lines represent the internal connections/communications within the Sensor System and
the Ground Control System. The dotted lines are connections between wireless interfaces such as the Aerial Robot
System and the Ground Control System through two different radio channels: 915 MHz and 2.4 GHz. b) The folded
2-element Yagi antenna design used in our sensor system for observations.

target. In contrast, for our system, each target can be estimated from the measurement based on the signal frequency

and tracked independently. Thus, we do not need to solve the data association problem. Notably, not all of the targets

are detected due to, for example, the UAV movements, the measurement range limits imposed by propagation losses

and receiver sensitivity. Therefore, if the target is not detected, the solver does not update its estimated position.

Besides maximizing the number of targets localized and tracked, we formulated a termination condition for each target

to conserve UAV battery power; a target is considered localized if its location uncertainty, determined by a determinant

of its particles covariance, is sufficiently small (<NTh). Then, those found targets are forgotten to aid the solver to

prioritize its computing resources on those targets with high uncertainty.

4 System Implementation

We implemented an experimental aerial robot system based on our tracking and planning formulation. An overview

of the complete system is described in Fig. 2a. Our experimental system used a 3DR IRIS+ UAV platform and a new

sensor system built with: i) a compact directional VHF antenna design, and ii) a software-defined signal processing

module capable of simultaneously processing signals from multiple targets and remotely communicating with a ground

control system for tracking and planning. In our system, the ArduPilotMega (APM) on the IRIS+ UAV transmits back

its global positioning system (GPS) location to the Telemetry Host tool developed by our group to communicate with

the APM module using the MAVLink protocol over a 915 MHz full duplex radio channel. The sensor system together

with the antenna, SDR receiver, and the embedded compute module delivers targets’ RSSI data through a 2.40 GHz

radio channel to the ground control system.

GPS locations of the UAV platform and targets’ RSSI data are delivered to our tracking and planning algorithm—

solver—through the Telemetry Host using a RESTful web service. The solver estimates target locations and calculates

new control actions per each POMDP cycle to command the UAV through MAVLink to fly to a new location. In order
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Figure 3: The signal processing module. (a) Software-defined radio: raw input RF signals are processed through
the HackRF One SDR device with different configurable amplifiers–Low Noise Amplifier (LNA) and Variable Gain
Amplifier (VGA), and an ADC to convert analogue signals to digital signals. (b) Embedded compute module: digital
signals are processed on an Intel Edison board using a DFT (Discrete Fourier Transform)-based frequency filter with
configurable input frequencies, edge filter and peak detector algorithms to derive radio collar RSSI measurements.

to ensure safety and meet University regulatory requirements, we also employ QGroundControl—a popular cross-

platform flight control and mission planning software—to monitor and abort autonomous navigation. We detail our

Sensor System below.

Signal Processing Module: Fig. 3 illustrates the components of the proposed signal processing module. We propose

using a software-defined radio (SDR) receiver to implement the signal processing components. The key advantages of

our choice are the ability to: i) reduce the weight of the receiver; ii) rapidly scan a large frequency spectrum to track

multiple animals beaconing on different VHF frequency channels; and iii) reconfigure the system on the fly because

the signal processing chain is defined in software.

In this work, we use the HackRF One SDR—an open source platform developed by (Ossmann, 2015) capable of di-

rectly converting radio frequency (RF) signals to digital signals using an analog-to-digital converter (ADC)—together

with an Intel Edison board as our embedded compute module. We implemented a Discrete Fourier Transform (DFT)

filter to isolate, from multiple signals, each unique VHF frequency channel associated with an animal radio collar and

measure the signal strength of the received signal.

Antenna: A lightweight folded 2-element Yagi antenna was specially designed for our sensor system. Our design

achieves a low profile antenna capable of being within the form factor of low-cost commodity UAVs suitable for easy

operation in the field. Similar to a standard 2-element Yagi antenna, the folded design has one reflector and one driven

element as shown in Fig. 2b.

The antenna operates in the frequency range from 145 MHz to 155 MHz (a typical range for wildlife radio tags), and a

center frequency of f = 150 MHz. The length of driven and reflector elements are Dd = 0.3975λ and Dr = 0.402λ,

13



respectively, while d1 = 0.1λ, d2 = 0.03λ and the inductive loading ring diameter is d3 = 0.015λ. Here, the

wavelength λ = c/f = 2 m with c = 3 · 108 m/s. The antenna gain model calculated for the the design is shown in

Fig. 6b.

4.1 Planning implementation for a real-time system

Implementing planning algorithms on any real-time systems is always challenging because of its high computational

demand. Thus, in the following, we present the approaches to minimize the planning computational time while not

sacrificing the overall localization performance:

1. Notably, for RSSI data, the uncertainty in the estimation of a target’s location is reduced when the maximum

gain of the directional antenna mounted on the UAV points toward the target position. Hence, to increase

the localization accuracy, the UAV heading angle θuk must be controlled during the path planning process,

although the multi-rotor UAV can be maneuvered without changing its heading. We select a set of discrete

UAV rotation angles for the control actionsAk based on a simulation-based study to reduce the computational

complexity of the POMDP planning process by limiting the number of possible actions to evaluate.

2. The solver performs planning in every Np observation cycles with Np > 1 instead of every observation.

This approach helps to ensure that the solver prioritizes its limited computational resource on tracking targets

instead of only performing planning steps.

3. A coarse planning interval tp in the planning procedure is implemented to minimize the computational time

by reducing the number of look-ahead steps while still having the same look-ahead horizon. For example, if

we want to estimate the target’s state in a 10 second horizon, we can use the normal interval tp = 1 s and

estimate the target’s state 10 times or use the coarser interval tp = 5 s and perform the estimation twice; the

latter approach is computationally less expensive.

4. Instead of selecting the best action from the possible action space Ak, the domain knowledge of the receiver

antenna gain is used to select a subset of actions that give the highest received gain using Alg. 1.

Following the above implementation approach, UAV motion includes two modes: i) changing its heading angle while

hovering; and ii) moving forward to its direct location. In one planning procedure with Np cycles, the UAV needs

b|4θ|/θmaxc cycles to rotate, and spends the remaining cycles Np−b|4θ|/θmaxc to move forward without changing

its heading. Here b·c and | · | are the floor and absolute operator respectively, and θmax is the UAV maximum rotation
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Algorithm 1 Calculate the control action subset
Input: Number of preferred actions NA,s, Ak, the antenna gain Gr, the target’s position xk+H
Output: Ask

1: for l = 1 : NA,k do
2: Get ulk+H ∈ Ak(l)

3: Calculate Glr = Gr(xk+H ,u
l
k+H)

4: end for
5: Ask = Ak(Glr ≥ Top NA,s of Gr)

angle in one cycle . The sign of 4θ decides the rotation direction (+ for the clockwise, and − for the counter-

clockwise).

5 Simulation Experiments

Implementing on a real system is time-consuming and difficult. Hence, we want to validate our systems first through

several simulation experiments to: i) verify our tracking and planning algorithms; ii) investigate how our planning

parameters such as different α values of the Rényi divergence or the number of discrete actionsNA,s = |Ask| created in

Alg. 1 contribute to the overall algorithm performance; and iii) compare our proposed Rényi divergence based planning

technique with other well-known methods, and the impact of the look-ahead horizon parameters on computational

time and localization accuracy. All of the simulation experiments were processed on a PC with an Intel(R) Core(TM)

i7-6700 CPU @ 3.40GHz, 32GB RAM and MATLAB-2016b.

5.1 Tracking and Planning Simulation

This simulation was implemented to validate our approach under a synthetic scenario where all parameters (e.g.,

velocity of the UAV vu) are set to those expected in practice. In this experiment, the UAV attempted to search and

localize 10 moving targets randomly located in an area of 500 m × 500 m. The following are the list of parameters

used in this simulation: the sampling time step is 1 second since the tag emits pulse signals every 1 second. The

solver performed a planning procedure every Np = 5 s, and the look-ahead horizon parameters: H = NHtp = 5 s

with the number of horizons NH = 1 and the planning interval tp = 5 s. The UAV started from its home location

at u1 = [0, 0, 20, 0]T m, moved under the constant velocity vu = 5 m/s with its maximum heading rotation angle

θmax = π/6 rad/s. The number of particles for each target was capped at Ns = 10, 000, with the number of future

sample measurements Ms = 50, the Rényi divergence parameter α = 0.5, the number of actions NA,s = 5. In

addition, a target is considered localized if its location uncertainty, determined by the determinant of its particles

covariance, is small enough—NTh = 10, 000 m2Ns was chosen as the limit. The LogPath measurement model with

15



0 100 200 300 400 500
0

100

200

300

400

500

1

2

3

4 5

6

7

8
9

10

RMS: 4.8 m

Flight time: 88 s

RMS: 26.3 m 

Flight time: 155 s

RMS: 13.6 m

Flight time: 517 s

RMS: 8.1 m

Flight time: 244 s

RMS: 10.8 m

 Flight time: 419 s

 RMS: 7.3 m

 Flight time: 129 s
RMS: 14.2 m

 Flight time: 587 s

RMS: 9.5 m

 Flight time: 393 s

 RMS: 9.5 m

 Flight time: 288 s

RMS: 11.2 m

 Flight time: 101 s

Real position of Target
Estimated position of Target
UAV Trajectory

x-coordinate (m)

y
-c

o
o

rd
in

at
e 

(m
)

Figure 4: Simulation results with 10 mobile targets localized using a single UAV.

P d0r = 7.7 dBm, n = 3.1, σP = 4.22 dB was used to verify our proposed algorithm. To demonstrate that our algorithm

was able to localize mobile targets, a wombat—an animal that usually wanders around its area was considered. Hence,

a random walk model was used to describe its behavior with a single target’s transitional density:

p(xk|xk−1) = N (xk;Fxk−1,Q) (9)

where F = I3 with In is n× n identity matrix , Q = σ2
Q diag([1, 1, 0]T ), σQ = 2 m/s.

Fig. 4 shows localization results for 10 mobile targets where the estimation details are annotated next to the target’s

position with two indicators: Root Mean Square (RMS) and flight time—see Sec. 5.2 for definitions. In summary, for

this scenario, it took the UAV 587 seconds to localize all ten moving targets at a maximum error distance of less than

15 m, except for an outlier, target #2 (RMS = 26.3 m). At flight time 587 s, after localizing the last target (target #7),

the UAV was sent a command to fly back to its original home location. In this case, the total UAV travel distance was

1.93 km. The results demonstrate that our algorithm can search and accurately localize multiple numbers of targets in

real time (about 10 minutes) and the travel distance 1.93 km is well within the capacity of commercial off the shelf

drones under the 2 kg mass category.
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5.2 Monte Carlo simulations

For this experiment, all of the Monte Carlo setup parameters were kept the same as in Sec. 5.1, except for those

under investigations. In addition, to ensure that the results were not random, all of the conducted experiments were

performed over 100 Monte Carlo runs. The tracking algorithm was evaluated based on the following criterion:

• Estimation Error is the absolute distance between ground truth and estimated target location Drms =∑Ntg

j=1 d
j
rms/Ntg with djrms = [(xjtruth − x

j
est)

2 + (yjtruth − y
j
est)

2]1/2.

• Flight time (s) for UAV to localize all of the targets and this includes hovering time when the UAV waits for

commands from the solver to take an action.

• UAV travel distance: the total distance traveled by the UAV to track and locate all of the targets to the required

location uncertainty bound; i.e the determinant of covariance being adequately small—NTh ≤ 10, 000 m2Ns

.

• Computational cost: We evaluate the computational cost in terms of two components: i) execution time for

the solver to execute the tracking algorithm only (called non-planning time), and ii) the execution time for the

solver to select the best action—planning step—as well as complete the tracking task (called planning time).

First, our search and localization algorithms were evaluated using different α values for Réyni reward function in (7).

Table 1 presents the Monte Carlo results for α = {0.1, 0.5, 0.9999}. In general, the α value does not significantly

impact the overall performance. However, applying α = 0.1 provides the best localization results in terms of esti-

mation error and search duration. Applying α = 0.5 proposed in (Ristic and Vo, 2010; Ristic et al., 2010) results in

the worst performance, it increases flight time and travel distance necessary to complete the localization task. Using

α = 0.9999 (considered as using KL divergence which is a popular information gain measure) helps to save UAV travel

distance while sacrificing location accuracy. One explanation for this scenario is that our noisy measurement causes

the predicted posterior p(xk+H |z1:k, z(m)
k+1:k+H(a)) in (7) to be less informative due to high uncertainty. Therefore,

the reward function should place more emphasis on the current posterior instead by using a small α value or setting

α → 1 to completely ignore the future posterior. This also explains the reason for the worst localization performance

observed when α = 0.5 (equally weighting the current and the future posterior).

Second, we conducted experiments to understand how the number of actions NA,s created by Alg. 1 affects our

tracking performance in term of planning time and localization error. Table 2 shows Monte Carlo results for NA,s =

{2, 3, 4, 5, 6, 7}. Increasing the number of actions beyond four does not necessarily lead to better planning decisions
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Figure 5: Localization performance for different number of targets Ntg increase from 1 to 10.

because of the directionality of the antenna gain. Since the antenna gain is not omnidirectional, some actions result

in changing the heading where antenna gain along the propagation path between the UAV and the target is lower;

when the number of actions evaluated is increased, we encounter instances when an action leading to such a lower

antenna gain, in fact, results in a higher reward. This result is a consequence of the inherent uncertainties in the

models used in tracking and planning. Thus, we can see that NA,s = 4 provides an adequate pool of actions to yield

the best localization performance in terms of estimation error, flight duration, and travel distance; a desirable result for

realizing real-time planning with limited computational resources.

Third, we want to examine the performance of our proposed algorithm under an increasing number of targets; in this

study, we increase the maximum number of targetsNtg from 1 to 10. As depicted in Fig. 5, our algorithm’s estimation

error was stable and invariant to the number of targets. Moreover, it is reasonable that the flight time and the travel

distance increased linearly with target numbers because it took more time and power to track more targets.

Table 1: Localization performance for different alpha values.

α = 0.1 α = 0.5 α = 0.9999

RMS (m) 12.35 12.77 12.96
Flight time (s) 724 741 727
UAV travel distance (km) 2.38 2.41 2.34

Table 2: Localization performance for different number of actions.

Number of actions NA,s 2 3 4 5 6 7

RMS (m) 14.18 12.64 12.17 12.27 12.83 12.63
Flight time (s) 840 781 693 723 756 799
UAV travel distance (km) 2.62 2.53 2.39 2.50 2.52 2.70
Planning time (s) 1.16 1.19 1.23 1.27 1.36 1.47

18



Table 3: Localization performance for different planning algorithms.

Uniform Closest
Target

Shannon (Cliff
et al., 2015)

Rényi

NH N/A N/A 1 1 3 5 10
tp (s) N/A N/A 5 5 1 1 1
RMS (m) 18.8 13.4 12.6 12.5 12.4 12.0 11.6
Flight time (s) 921 799 774 699 889 811 822
UAV travel distance
(km) 3.72 2.29 2.54 2.27 2.99 2.82 2.42

Planning Time (s) 1.58 1.11 1.38 1.28 1.53 1.65 2.71
Non-planning Time
(s) 1.58 1.03 0.99 0.97 0.96 0.97 0.96

Fourth, we examined the performance of the information gain measure, Rényi divergence, under different look-ahead

horizons H = NHtp compared to: i) Shannon entropy (Cliff et al., 2015); ii) a naive approach that moves UAV to the

closest estimated target location; and iii) a uniform search with the predefined path used in (Ristic et al., 2010). Table

3 shows the Monte Carlo comparison results among various planning algorithms. All the parameters were reused

from the Sec. 5.1, except for α = 0.1 and NA,s = 4 were updated based on the previous experimental results. The

results demonstrated that Rényi divergence based reward function leads to significantly better planning strategies in

comparison with other reward functions in terms of localization accuracy, including Shannon entropy with the same

horizon settings (NH = 1; tp = 5). For Rényi reward function itself, the large look ahead horizon number NH > 1

helps to improve the localization accuracy; however, it requires higher computational power (planning) and causes the

UAV to travel further. Using NH = 1; tp = 5 s provides the best trade-off between computational time and accuracy.

Summary: According to the above simulation results, we select α = 0.1, NA,s = 4, and NH = 1, tp = 5 s as

the planning parameters for the field experiment since these parameters provides the lowest computational cost, best

performance in term of location estimation error, travel distance and flight time.

6 Field Experiments

We describe here our extensive experiments regime to validate our approach and evaluate the performance of our aerial

robot system in the field. Our aim is to: i) investigate the possibility of signal interference from spinning motors of a

UAV on RSSI measurements; ii) estimate the model parameters in the sensor model and validate the proposed model;

and iii) conduct field trials to demonstrate and evaluate our system capabilities.
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Figure 6: a) Waterfall plot for the rotor noise experiment when four motors spun at maximum rotation speed. b)
Normalized antenna gain in E-plane G(φ). The red line is gain modeled pattern and black line is the normalized
measured gain pattern from 30 measurements collected by rotating the UAV heading at 15◦ intervals.

6.1 Rotor noise

We investigated the rotor noise to confirm that our system is not affected by the electromagnetic interference from

the UAV’s motors. It also helps to clear the concern raised in (Cliff et al., 2015) that the rotor noise may affect

the RSSI measurements. Four motors of the 3DR IRIS+ quad-copter shown in Fig.1 were used in this experiment.

The RSSI data of a radio collar were measured across 149 MHz to 151 MHz frequency spectrum when four motors

were operating at 20%, 50%, 100% of its maximum speed of 10, 212 revolutions per minute. Fig 6 (a) shows the

frequency spectrum of the received signal. We can see that there was no difference in the frequency characteristics

when the rotors were in ON and OFF states. This result confirms that the rotors do not spin fast enough to generate

high-frequency interference to impact our RSSI measurements.

6.2 Sensor model validation and parameter estimation

Antenna Gain: The antenna gain pattern was measured to verify its directivity compared to the antenna gain model

Gr(x,u) = Gr(φ) calculated—following (Orfanidis, 2002, p.1252)—based on the physical design as discussed in

Sec. 4. Fig. 6b shows the measured and modeled radiation patternsGr(φ) in the E-plane. In the measurement process,

φ is evaluated as the angle between the UAV heading, changed through 0◦ to 360◦, and the direction from its position

to a fixed location of a VHF radio tag. The result shows that the front-to-back ratio is smaller (2 dB) than expected

and this is an artefact of folding the reflector on our design.

Signal propagation model parameter validation: We collected RSSI data points over a range from 10 m to 320 m

between the UAV and a VHF radio tag. The tag and the UAV were kept at a height of 5 m above ground during this

experiment. The tag was stationary at all times, while the UAV was directed to move away in a straight line from the
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Figure 7: Plot of measured RSSI data points and its model estimates over a distance from 10 m to 320 m at 10 m
intervals.

tag at 10 m intervals whilst hovering at each location to allow the collection of approximately 30 measurements. The

UAV heading was maintained to ensure consistent antenna gain during the experiment. Since we operated in an open

terrain over a grassland, we selected the path loss exponent n = 2 suitable for modelling free space path loss. Fig.

7 shows the measured RSSI and the propagation models obtained using a nonlinear regression algorithm to estimate

model parameters; we have the following results for reference power P d0r in (3), (4) at the reference distance d0 = 1

m, and measurement noise variance σP in (5):

• LogPath model : P d0r = −15.69 dBm ; σP = 4.21 dB.

• MultiPath model : P d0r = −15.28 dBm ; σP = 2.31 dB.

The results show that both models, as expected, derived a similar reference power P d0r whilst providing a reasonable

fit to measurement data. This affirms the validity of our propagation model. Although LogPath model is reasonable,

MultiPath model is more accurate and yields a smaller measurement noise variance. The results confirm the impact of

ground reflections, especially close to the signal source.

6.3 Field Trials

We designed and conducted two sets of field experiments that included 20 autonomous missions as described below.

• First set of trials (autumn season): We conducted a total of 16 autonomous flights with two mobile radio-

tags to evaluate the measurement models and demonstrate the robustness of our system (see Section 6.4).

• Second set of trials (winter and wet season): We conducted 4 autonomous flights with the best performing
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measurement model. These experiments were aimed at demonstrating the multi-target tracking capability of

our aerial robot platform under a mix of stationary (3 radio-tags) and mobile (2 radio-tags) target dynamics.

In particular, we subjected our system to two highly mobile targets. Notably, these trials were conducted

during the wet winter months when the test zone was over-grown with grass and shrubs. Therefore, these

experiments demonstrate our system’s capability to plan a trajectory to track multiple radio-tagged objects

with differing motion dynamics and under different environmental settings (see Section 6.5).

Our experiments were designed around the University of Adelaide and CASA (Civil Aviation Safety Authority, Aus-

tralia) regulations governing the conduct of UAV research. Given the need to operate in an autonomous mode, our

flight zone, as well as the scope of the experiment, was restricted to University-owned property designated for UAV

flight tests. Prior to gaining ethical and regulatory clearances to progress our field trial to a wildlife species of interest

to conservation biologists, our first objective is to evaluate and demonstrate a robust working prototype. This is a

necessary condition to gain both regulatory and ethical approval. Further, it is not feasible to have a wildlife species of

interest at the remote test site and conduct experiments to systematically evaluate the aerial robot system. Therefore

we chose to conduct experiments with human test subjects with stipulated safety measures in an area allocated for field

tests. This allowed us to create various target motion dynamics as well as obtain accurate ground truth data for tag

locations to evaluate our system. Notably, our measurement model is based on the Received Signal Strength Indicator

(RSSI-based) measurements of signals transmitted from radio-tags. Hence, there is no technical difference whether

the radio-tags are carried by humans or wildlife.

In the field trials, the task of the aerial robot system was set to search and localize radio-tags undergoing various

motion dynamics in a search area 75 m × 300 m (2.25 hectares). Instead of wildlife, we relied on volunteers to wear

a VHF radio tag of the type shown in Figure 8 on their forearm, and carry a mobile phone-based GPS data logger in

their hands to obtain ground truth data. We were required to have two extra personnel stationed to maintain constant

sight of the UAV as well a pilot with RePL (Remote Pilot License) in the field capable of aborting the autonomous

mode and transferring control to manual operations mode.

6.4 First Set of Trials

In this section, we present the first set of field trials to demonstrate the planning method for tracking mobile targets.

We also compare localization performance between the two signal propagation models: LogPath model and MultiPath

model derived in section 6.2. We used two VHF radio collars for these trials.

Fig. 9 shows the tracking and localization results along with UAV trajectories based on the two different measurement
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Figure 8: A collar used for radio tagging the endangered species of Southern Hairy Nose (SHN) wombats used in our
field experiments. Each tag used in our experiments transmits an unmodulated on-off-keyed signal with a pulse width
ranging from 10−20 ms, at a period of approximately 1 s, and using a unique frequency in the range of 150−152 MHz.

models. As expected, we observe the UAV planning has a tendency to approach the target’s position since when

the distance between the UAV and targets reduces, the RSSI measurement uncertainty is reduced. thus it helps to

reduce the uncertainty and increase the information gain. We can observe a clear difference in the LogPath model

and MultiPath model where UAV pursues the second target after completing the tracking task for target 1. The more

accurate MultiPath model is able to track and localize the second target without needing a close approach. We can also

observe that using LogPath model, where multipath propagation is not modeled but is clearly dominant close to the

target, leads to a poorer localization accuracy despite the path planning algorithm leading the UAV close to the target.

Fig. 10 shows the particle distribution after the first observation is updated and when the targets are tracked and

localized using the two measurement models. We can see that the solver is able to estimate the two tag positions

quiet accurately even after the update using the initial observation; however, the uncertainty (as noted by the particle

distribution) is still very high. Interestingly, MultiPath model location uncertainty is significantly less where target

1 is placed in the bottom half of the field while target 2 is placed in the top half of the field. Target 1, being closer

to the UAV, is localized first, with under 55 measurements for both measurement models. At the time when target 1

is localized, the uncertainty of target 2 is relatively higher for the LogPath model. The MultiPath model required

significantly fewer measurements to track and localize target 2. As expected, both measurement models required

significantly more measurements to localize the second target given the high measurement uncertainty associated with

being much further than the first target from the UAV during its flight. Furthermore, random walk of the second target

provided a challenging scenario since target 2 typically moved a larger distance around the field compared to the

random walk performed by target 1.

Although the solver guides the UAV to move toward a target’s position in both measurement models, as expected,

the standard LogPath model is less accurate compared to the MultiPath model shown in Fig. 7; thus, the uncertainty

when using the LogPath model is higher and leads to longer time duration to localize the two tags. Albeit model

uncertainty, the LogPath model is still capable of locating both moving targets within the flight time capability of the
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Figure 9: Field experiment results to search, track and localize two mobile tags for the two different measurement
models. a) Standard LogPath. b) MultiPath.

UAV. The consequence of model uncertainty resulting from the LogPath model is more apparent when the UAV makes

an approach to the target and the distance to the target is less than 50 m. This is evident in comparing the belief density

in Fig. 10a at k = 125 to that in Fig. 10b at k = 109. We can see that the target location uncertainty increase for the

LogPath model in the vicinity of 50 m and as a result, the UAV requires an increased number of maneuvers to track

and locate the target.

Table 4 presents the summary comparison results of location estimates between the two measurement models. Smaller

RMS (root mean square) estimation error values suggest a higher accuracy, while shorter flight times and travel dis-

tance to localize all targets are highly desirable for a practicable system given the power constrained nature of com-

modity UAVs. The results confirm that the MultiPath model is superior to the standard LogPath model since it has

been able to account for ground reflections. Further, the UAV is not required to approach the target closely to reduce

its measurement uncertainty when using the MultiPath model.

The results in Table 4 also demonstrate that our proposed method can localize two mobile targets with a shorter

flight time and better accuracy compared to the method in (Cliff et al., 2015). The RMS flight time realized with the

MultiPath model is one-sixth of that in (Cliff et al., 2015)). Although our experiments were not performed with a live

target animal species of interest to conservation biologists, we search and locate two mobile radio-tagged targets. In

contrast, (Cliff et al., 2015) method was formulated and implemented to locate a single stationary target. However,

the approach in (Cliff et al., 2015) was evaluated with a stationary radio-collared live bird while our field experiments

were conducted with human test subjects.

2Information regarding the total flight is not reported in (Cliff et al., 2015), however, as shown in Fig. 9 in (Cliff et al., 2015), one observation
took 76.21s and one trial needed 11 observations, hence total flight time is 11× 76.21 = 838.31s

24



Real position of Target
Estimated position of Target
UAV Trajectory

Real position of Target
Estimated position of Target
UAV Trajectory

Real position of Target
Estimated position of Target
UAV Trajectory

(a)

Real position of Target
Estimated position of Target
UAV Trajectory

(b)

Real position of Target
Estimated position of Target
UAV Trajectory

Real position of Target
Estimated position of Target
UAV Trajectory

Figure 10: The intermediate distributions of belief density representing the location of the radio-tags for the two
scenarios in Fig. 9. Here, Fig 10a demonstrates the convergence of the belief density of the radio-tag positions using
the standard LogPath measurement model in Fig. 9a) after first observation (k = 1), tag 1 is localized (k = 55), and
tag 2 is localized (k = 125). Similarly, Fig 10b demonstrates the convergence of the belief density of the radio-tag
positions using the MultiPath measurement model in Fig. 9b) after the first observation (k = 1), tag 1 is localized
(k = 53), and tag 2 is localized (k = 109). The blue and orange dots represent the starting positions of tag 1 and tag 2,
respectively. The square symbols denote the ground truths of the localized tags; the star symbols denote the estimated
positions of the tags. The solid yellow lines represent the UAV trajectories.

Table 4: Comparison of localization performance.

Model Target Type Trials RMS (m) Total Flight Time (s) Travel Distance (m)

LogPath Mobile 8 30.1± 12.8 255± 104 549± 167

MultiPath Mobile 8 22.7± 13.9 138± 53 286± 121

(Cliff et al., 2015) Stationary 6 23.8± 14.0 8382 N/A
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6.5 Second Set of Trials

In this section, we present the second set of field trials. We use the Multipath measurement model because it provides

a better measurement likelihood as shown in the tracking accuracy and flight time results in Table 4. We can see from

Fig. 3, the SDR-based signal processing architecture used in our system scales to enable tracking a large number of

radio tags. The number of VHF radio-tags that can be tracked and localized is only limited by the hardware, such as

the battery life of the UAV and the receiver noise of the SDR. In order to demonstrate scalability and robustness, we

used five radio-tags. In order to demonstrate the capability of our system to accommodate different animal behaviors,

we used two highly mobile targets (target 1, 2) and three stationary targets (target 3, 4, 5). Further, to demonstrate the

robustness of our measurement model, we conducted these trials in the wet, winter season in South Australia where

the test site was representative of a grassland with shrubs and moisture. We conducted four field missions in which the

task of our aerial robot system was to track and localizes five targets as opposed to two mobile targets investigated in

Section 6.4. All other experimental settings were as described in Section .6.4.

Fig. 11 depicts the UAV and mobile target trajectories together with tracking and localization results. Table. 5 presents

a quantitative summary of the results from the four field missions. The results show that when the targets are highly

mobile, such as target 1 in Fig. 11a or target 1 and 2 in Fig. 11d, the UAV takes longer flight paths to be able to

localize these highly mobile targets. This is because the UAV undertakes control actions to position itself to reduce

measurement uncertainty. Consequently, we also see that the UAV path planning algorithm undertakes control actions

to navigate the UAV closer or follow targets to quickly reduce measurement uncertainty. In contrast, when the targets

are less mobile as shown in Fig. 11b-c, the UAV can easily localize the targets with fewer measurements, shorter flight

paths, and without needing to approach the targets. Thus, when targets are less mobile, the UAV requires less flight

time to accurately track and localize them. We can see that our planning for tracking approach was robust with respect

to various target motion dynamics we have created. Further, the results summarized in Table 5 demonstrate that our

localization results were consistently high across all four missions.

As expected, our aerial robot system can successfully track and localize multiple radio tags. In relation to the first set

of field trials, we can also see that our system is: i) scalable to a larger number of VHF radio-tags; ii) robust against

variations in environmental conditions; and iii) robust with respect to various target behaviors.
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Table 5: Localization performance over four field missions to track and localize five radio-tagged targets.

RMS (m)
Flight time

(s)
Target dynamics Mobile Stationary Mean
Target # Target 1 Target 2 Target 3 Target 4 Target 5
Mission 1 27.3 19.1 27.2 18.1 19.9 22.3 163
Mission 2 9.3 21.8 24.9 25.4 23.7 21.0 143
Mission 3 15.0 9.3 18.7 30.6 16.3 18.0 128
Mission 4 10.0 29.6 18.4 25.1 16.6 19.9 165
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Figure 11: Four autonomous field experiment missions to search, track and localize five targets: two mobile targets
(target 1, 2) and three stationary tags (target 3, 4, 5). Fig. 11(a), (b), (c), and (d) corresponds to the sequence of the
missions in Table 5. The square symbols denote the ground truth of the localized radio-tags; the star symbols denote
the estimated positions of the radio-tags; the solid blue lines represent the trajectories planned by the autonomous
aerial robot to track the set of five VHF radio-collared tags.

7 Discussion

In this section, we summarize and discuss results from our approach as well as compare and discuss our results in the

context of the recent study by (Cliff et al., 2015) (see Section 7.1). We then reflect upon the lessons learned from our

field trials to build, test and evaluate a new approach following a different school of thought for autonomous tracking
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and localization of VHF radio-tags (see Section 7.2). Our work, being a first, is not without limitations. We discuss

these in Section 7.3.

7.1 Comparison

Table 6 presents a complete comparison between our proposed system and (Cliff et al., 2015) system. Notably, our

search area is smaller compared to (Cliff et al., 2015) (75 m× 300 m v.s 1000 m× 1000 m) due to our test flight zone

restrictions; however, we have set up our initial distance from the UAV home position to its farthest target’s position

to be equivalent to the distance of the stationary target in (Cliff et al., 2015); approximately 300 m. Although we

have tried to replicate the distance to the location of a radio-tag, the detection range is determined by a number of

factors other than the specification of the receiver and the antenna used. The detection range is heavily influenced

by the transmitted power of a radio-tag, which is adjusted based on application requirements and varies in different

environments, even for the radio collars form the same manufacturer. Therefore, we have not directly compared the

detection range. Instead, we have tried to achieve a similar UAV-to-target distance in our experimental settings.

In general, as shown in Table 6, our system is more compact, lighter, and has a payload that is one-third of that in (Cliff

et al., 2015) and consequently capable of longer flight times on any given UAV. Our total system mass being under

2 kg enables ecologists in jurisdictions such as Australia (Civil Aviation Safety Authority, 2017), Germany (Federal

Ministry of Transport and Digital Infrastructure, 2017) and India (Office Of The Director General Of Civil Aviation,

2018) to operate our system without a remote pilot license (RePL) and regulatory burdens. Moreover, as shown

in Table 4, compared to the bearing-only method requiring full rotations of a UAV at each observation point, the

ability to instantly collect RSSI measurements also helps reduce flight times significantly. Furthermore, as discussed

in (Arulampalam et al., 2002), the computational cost for grid-based methods used in (Cliff et al., 2015) increases

dramatically with the number of cells whilst the grid must be dense enough to achieve accurate estimations; e.g., a

grid-based filter with N cells conducts O(N2) operations per iteration, while a similar particle filter with N particles

only requires O(N) operations. Hence, the grid-based filter method is only suitable for case with stationary targets

as in (Cliff et al., 2015) where the most expensive computational step, the prediction step, is skipped. Moreover, as

shown in Table. 3, our planning algorithm based on Rényi divergence is superior to the Shannon entropy approach

in (Cliff et al., 2015) in terms of two important metrics: i) accuracy; and ii) UAV flight time.

The studies in (Dos Santos et al., 2014) and (VonEhr et al., 2016) also used an SDR receiver and considered the

problem of detecting multiple VHF radio-tag signals using a software defined radio based receiver. We can make the

following observations regarding the other SDR based receiver approaches:
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Table 6: Comparison between our system and (Cliff et al., 2015) system.

Ours (Cliff et al., 2015)

Payload (g) 260 750
Total mass (g) 1,280 2,200

Drone type Quadcopters (smaller drone) Octocopters (relatively larger drone)

Receiver
Architecture

Software defined radio (digital-based,
rapidly scan multiple frequencies to
support detecting signals from multiple
animals)

Analog filtering circuit and a fixed
frequency narrowband receiver
(analog-based, difficult to re-configure for
a new frequency)

Antenna elements
Compact, lightweight, folded 2-element
Yagi antenna (designed for small drone
form factor)

Antenna array structure requiring a large
spatial separation of two antenna elements
and wire ground plane

Measurement model
Range-only (exploiting the simplicity of a
range-only measurement system)

Bearing-only (antenna array, and UAV
rotation at grid points with a phase
difference measurement system)

Filtering method
Particle filter (O(N) operations per
iteration)

Grid-based filter (O(N2) operations per
iteration)

Planning algorithm
(reward function)

Rényi divergence Shannon entropy

Targets dynamics Multiple mobile targets A single stationary target

Nature of targets Radio tags carried by humans test subjects A radio-tagged bird (Manorina
Melanocephala)

• The team in (Dos Santos et al., 2014) used an SDR payload on a UAV flying a pre-defined flight path to

store raw signal detections. This data was post-post processed after the flight to build a signal heat map. The

detection range reported in (Dos Santos et al., 2014) is 240 m, similar to our range of 320 m.

• This study in (VonEhr et al., 2016) discussed two software defined radio methods to collect VHF signal

measurements: i) using the Doppler effect; ii) bearing measurements obtained by rotating a drone-mounted

Yagi antenna, the so-called Yagi Rotation Methodology. Notably, this measurement approach is like that

proposed in (Cliff et al., 2015). Only the Yagi Rotation Methodology was implemented with a reported

bearing measurement accuracy of ±30 degrees. More significantly, the detection range reported in (VonEhr

et al., 2016) is up to 1.5 km. This is mainly due to a higher gain antenna (3-element Yagi vs 2-element Yagi of

our system) and a more sensitive SDR, the Funcube Dongle Pro+ (FDP+) SDR used in the study. Although

the Funcube Dongle Pro+ (FDP+) has a higher receiver sensitivity, it has a limited bandwidth compared the

HackRF One SDR device we employed.

The mass of the sensor systems was not reported in (VonEhr et al., 2016), but Funcube Dongle Pro+ (FDP+) SDR

device with a mass of 17 g is significantly more lightweight than the HackRF One we employed with a mass of

100 g. Although detection range cannot be directly compared, we can see that together with a higher gain antenna, the
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hardware employed in (VonEhr et al., 2016) achieved a significantly larger signal detection range compared with our

study and the the studies in (Dos Santos et al., 2014) and (Cliff et al., 2015).

7.2 Lessons Learned

In this section, we share our observations and discuss lessons learned during our extensive set of field experiments.

We also share with the research community guidelines for establishing a framework for UAV operations and related

research.

We realize that the field trials are difficult for any robotics system, especially for aerial platforms where several strict

regulations govern their operation. These regulations can depend on jurisdictions under which the flight operations are

conducted. Typically, regulations imposed can be different depending on the purpose of the flight such as commercial

or recreational and the weight class of the UAV. Currently, there is a lack of harmonization in these regulations. For

instance, the requirement for a remote pilot license (RePL) applies to countries such as Australia, Germany, and

India only for UAVs over 2 kg (Civil Aviation Safety Authority, 2017; Federal Ministry of Transport and Digital

Infrastructure, 2017; Office Of The Director General Of Civil Aviation, 2018). In contrast, New Zealand and Finland

only require a license for UAVs over 25 kg (Civil Aviation Authority Of New Zealand, 2015; Finnish Transport Safety

Agency, 2016). Therefore the research team must first familiarize themselves with existing regulations governing the

operation of UAVs. Second, the research team needs to negotiate with the insuring body under which they operate

to allow the conduct of drone-based flights as this should not be assumed. Insurance agencies can place further

restrictions upon the possible field trials that can be conducted due to legal and risk issues. Dealing with these critical

issues first will allow getting a framework under which to operate UAV related research such as our work in this article.

At the time of doing this research, such a framework was pioneered at our University. This included the creation of

a Chief Remote Pilot position and a Maintenance Controller Position. Subsequently, applying to CASA (Civil and

Aviation Services, Australia) to obtain a Remotely Piloted Aircraft Operator’s Certificate (ReOC) to conduct UAV

missions. The Chief Remote Pilot registered with CASA then has the authority to evaluate, manage and approve all

UAV flights conducted by University staff and students.

We observed, in both field experiments and simulations, that flying the robot platform higher allows obtaining a better

signal compared to ground-based systems. This is because the signal propagating to the UAV system entering an

open airspace will be less attenuated than a signal propagating to a ground-based antenna and receiver system. This

is since a signal propagating to a ground-based receiver will be more attenuated from potentially multiple radio wave

scatters, reflectors, absorbers such as shrubs and grass in the intervening paths. Therefore, flying the robot at a higher

altitude can increase the detection range. Notably, in practice, this height advantage is sometimes obtained by using
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lightweight aircraft and this is an expensive proposition.

The detection range of our current system is not comparable to handheld systems. However, we can see that to develop

a mature tool that can function independently and survey a large area of land, we need a longer signal detection range.

One simple approach to increase the range is to employ a preamplifier stage for the SDR we have used. An alternative

approach is to consider an SDR device with greater sensitivity in the VHF band. For example, an earlier SDR based

design (VonEhr et al., 2016) has achieved a 1.5 km detection range. Although we could not have benefited from such

a long range given the limited University allocated space for testing, the study in (VonEhr et al., 2016) shows that a

different SDR device based receiver can offer much longer detection range. Most notably, the SDR used in (VonEhr

et al., 2016) with a mass of only 17 g can be used to replace the SDR of mass 100 g we have employed to realize a

further reduction in the mass of the sensor system.

The current flight time for 3DR IRIS+ quad-copter carrying our sensor system is only around 10 minutes while the

detection range of the type of VHF collar we have used is around 320 m. Thus, surveying a larger area in the order

of several hundred hectares is not yet feasible for our battery-equipped UAV. However, assuming we employ the SDR

receiver used in (VonEhr et al., 2016), we can achieve a reported detection range of 1.5 km. Consequently, we can

see that such a detection range can achieve a survey area defined by a radius of 1.5 km to yield an area of over 700

hectares. Alternatively, if we assume that the survey area scales with the square of the detection range, we can see that

an area of 225 hectares can potentially be surveyed.

Further, we observe that flying the UAV close to highly mobile targets helps to reduce localization uncertainty. We can

clearly observe this in our path planning results in Fig.11a where target 1 was running back and forth compared with

the UAV trajectory for Fig.11b where target 1 was less mobile. However, a close approach by a UAV may disturb the

wildlife of interest (Hodgson and Koh, 2016; Mulero-Pázmány et al., 2017) and can be potentially counterproductive

when attempting to obtain accurate spatial and temporal information of threatened species. Wildlife reactions to a

UAV differ among different species. For example, terrestrial mammals are less reactive to a UAV than birds (Mulero-

Pázmány et al., 2017). Therefore, the potential for disturbance as well as operating parameters of a UAV close to

wildlife is more likely to be dependent on the species of interest. We hope to be able to address questions around

appropriate operating parameters for drones in our future work. Nevertheless, we should consider maintaining a

safe distance from wildlife. A practical solution can be found by flying at the highest altitude possible (Mulero-

Pázmány et al., 2017). A second approach is to use a receiver with a higher sensitivity, such as the hardware used

in (Mulero-Pázmány et al., 2017), to increase the signal detection range. A third approach can be to reformulate

the trajectory planning algorithm using the void probability functional proposed in (Beard et al., 2017). Such a

planning method can alter the control decisions of the path planning algorithm to avoid approaching wildlife and
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always maintain a safe distance.

7.3 Limitations and Future Work

While we have demonstrated a successful system, our approach is not without limitations.

Although we formulated a three-dimensional (3D) tracking problem—see equation (9)—our implementation assumed

a fixed UAV altitude during the field trials. Therefore the implemented algorithm solved a two-dimensional (2D)

tracking problem, that is ideally suitable for tracking and locating endangered species in largely flat terrains and

grasslands. Consequently, the current approach is not suitable for tracking wildlife in hills or mountainous areas.

Notably, implementing a 3D tracking algorithm is straightforward given our formulation is already in 3D. Instead of

assuming the target’s height is fixed, we need to incorporate an additional unknown variable ptz for the target height in

the target state space described by x in Section 3.1 and estimate the value of this unknown variable together with the 2D

coordinate variables, ptx and pty . We have conducted simulations to evaluate a 3D formulation where the target height

is unknown with an initial uncertainty ranging between ±10 m and the UAV altitude is assumed to be known exactly.

The simulation results confirm that our tracking and planning algorithm is still able to track and localize multiple radio-

tagged targets with unknown heights. However, the practical challenge is that we need to obtain accurate UAV altitude

measurements to implement a robust 3D tracking formulation. Commercial off the shelf UAVs such as the 3DR IRIS+

that we used for building our autonomous system employs a barometer to determine height. We observed in flight

tests that the height measurement is unreliable, fluctuates over time and often depends on weather conditions; as also

observed in (Szafranski et al., 2013; Liu et al., 2014). Thus, we leave it for future work to address the problem of

accurately estimating the altitude of a UAV. Two approaches that can be considered include: i) filtering the barometer

sensor data using, for example, a Kalman filter (Liu et al., 2014); and ii) the use of a LiDAR sensor or a radar-based

sensor for more accurate height above ground estimations (Schartel et al., 2018). Alternatively, employing the existing

implementation on all topographical conditions require a UAV capability to maintain a fixed relative altitude above

ground.

While the software defined radio device may be replaced to achieve a greater detection range, as we discussed in

Section 7.2, future work should focus on the development of new antenna designs. We designed, simulated and built a

compact, folded two element Yagi antenna. Further research efforts to investigate antenna design techniques can lead

to lightweight higher gain antennas to increase the detection range and survey area.

The range of the 2.4 GHz wireless link we employed for communicating between the Ground Control System and the
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UAV has limited outdoor range—see Figure 2. Although, this is not a problem given the limited test site available for

our work, building a practical tool requires addressing this potential problem. Thus, future work should piggyback

data on the telemetry channel using the long-range 915 MHz radio channel (VonEhr et al., 2016). Alternatively, the

Ground Control System can be removed from the loop by embedding all of the tracking and planning algorithm on the

UAV itself to increase the system reliability and search area by eliminating the transmission power consumed by the

additional 2.4 GHz radio channel.

Our problem formulation assumes that at least one target is visible or the UAV’s initial heading can be in the general

direction of the targets. This approach is similar to that followed in (Cliff et al., 2015). In future work, planning

formulation should consider both exploration and tracking to deal with events where there are no detectable radio

signals (Charrow et al., 2015).

8 Conclusions

We have developed and demonstrated an autonomous aerial vehicle system for tracking and localizing VHF radio-

tagged animals using noisy RSSI based measurements and considered the mobility of targets during their discovery

in the field. The joint particle filter and POMDP with Rényi divergence based reward function provided an accurate

method to explore, track and locate multiple animal collars while considering the resource constraints of the underlying

UAV platform. In addition, we have realized a lightweight sensor system to minimize the payload on a UAV and

achieve longer flight times.

We have demonstrated the robustness and scalability of the system in field experiments with five VHF radio collar tags

under various motion dynamics. We conducted 20 autonomous flights and over 10 manual flights for sensor system

evaluations. Our future goal is to evaluate our aerial robot system in field trials with different species of animals. We

are in the process of obtaining ethics clearance for our first trial with the engendered Southern Hairy Nose wombats in

South Australia.
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