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Abstract—We consider the problem of real-time estimation of
sea state and wave-induced motions on a moving vessel using
onboard inertial sensors without knowing vessel’s dynamic pa-
rameters (i.e., draught and breadth). This is crucial for vessel op-
erational planning and performance, preventing structure failure,
emissions reduction and fuel economy. This work proposes a new
estimation approach by reformulating the conventional problem
of sea state and vessel motion estimation (unknown input into
a known dynamic system) as an input-state-parameter estimation
problem of mass-spring-damper systems. We exploit the strong
correlations between a vessel’s vertical displacement and its
rotation to develop a new estimation algorithm—Parameter-
Sharing Extended-Augmented Kalman Filter (PS-EAKF)—for
the problem to estimate the unidentified vessel parameters
together with vessel motion (heave and pitch) and sea state.
Experimental data from a scale-model vessel in regular head seas
demonstrate the effectiveness and robustness of the proposed
approach.

Index Terms—Sea waves, Mass-spring-damper system, Input-
state-parameter estimation problems, Condition monitoring.

I. INTRODUCTION

UNderstanding the motion of a vessel affected by sea
waves is a fundamental problem in maritime engineering

and naval architecture [1]. This knowledge is important for
the stability of vessels, improved operational performance
(optimal cruising speed), preventing structure failure (due to
mitigation of impulsive wave loads and periodic fatigue), emis-
sions reduction and fuel economy (via reduced resistance) [1]–
[3]. As illustrated in Fig. 1a, conventional methods [4], [5]
estimate sea states —such as wave elevation and frequency—
and the vessel responses–such as heave and pitch—to wave
excitation by considering the vessel as a wave buoy and use

the recorded responses as the input to the estimator. These
methods rely on the linear relationship between the vessel
response and wave excitation described by transfer functions,
often derived from computational models, to estimate sea wave
parameters. In [4], an adaptive Kalman filter was proposed
for the real-time estimation of sea state using noisy sensor
measurements (i.e., displacements and accelerations) and the
vessel’s transfer functions computed from simulation tools to
construct the measurement models. In [5], the approach was
extended to the sea state estimation from a moving vessel.

Conventional methods in [4], [5] are information de-
manding, requiring a well-defined model of incident waves
coupled with the vessel response modelled by transfer func-
tions. The latter depends on accurate vessel geometry and its
hydrodynamic characteristics (moment of inertia, buoyancy,
payload) [6]. Hence, when this information is not readily avail-
able, the application of conventional methods becomes im-
practical due to many unknown, vessel-wave dynamic model
parameters. Thus, it is highly desirable to estimate sea state
without prior knowledge of the vessel’s response described by
complex transfer functions and associated parameters.

Although a formulation to estimate sea state and a vessel’s
response without prior knowledge of the vessel’s parameters
remains to be explored, such a problem would naturally lead to
solving a challenging input-state-parameter estimation prob-
lem. In general, when system parameters are known, several
optimal filtering approaches have been proposed to solve the
joint input-state estimation problem [7]–[13]. However, the
problem is significantly more challenging if no prior knowl-
edge exists for all three quantities. The resulting input-state-
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Fig. 1. a) Wave-induced vessel motions. b) An illustration of the input-state-
parameter estimation problem with a pseudo-mass-spring-damper model.

parameter estimation problem has recently drawn significant
interest. Naets et al. [14] included the unknown inputs and
parameters in the state vector to form an augmented state
vector and implemented the EKF (extended Kalman filter) to
estimate the augmented state. Azam et al. [15] augmented the
state vector with the unknown parameters and then utilised an
unscented dual Kalman filter proposed in [16] to estimate the
system’s state, inputs, and parameters. Wan et al. [17] adapted
Gillijins and De Moor filter to minimise covariance and avoid
biased estimation. Maes et al. [18] proposed a new algorithm
to adopt a time delay in the estimation and significantly re-
duced estimation uncertainty. Although attaining good results,
current methods only consider problems without correlation
between the unknown parameters, such as damping and mass
parameters in mechanical systems.

In this work, we formulate a new algorithm to estimate sea
state and a vessel’s response without prior knowledge of the
vessel’s parameters—where system parameters, the vessel’s
breadth and draught are unknown. In contrast to conventional
methods, our approach investigates casting the problem as an
input-state-parameter estimation problem of dual pseudo mass-
spring-damper systems derived from the simplified seakeep-
ing analysis for heave and pitch of a vessel. In particular,
we exploit the correlation of motion vectors and develop
a new estimation algorithm; a Parameter-Sharing-Extended-
Augmented Kalman Filter (PS-EAKF) for the problem where
the estimated parameters are shared across dual filters—one
tasked with estimating heave and the other, pitch–at every

recursion (see Fig. 1b).
The work is organised as follows. Section II describes the

background of wave-induced vertical motions of a vessel.
Section III formulates the problem and presents the proposed
PS-EAKF algorithm. Section IV is an experimental study
using a model-scale dataset. Section V draws our conclusions.

II. BACKGROUND

A. Notations

We denote scalar values using normal letters (e.g., x,A),
vectors and matrices using bold letters (e.g., x,D). Addi-
tionally, if the displacement is denoted by x, then the corre-
sponding velocity and acceleration are ẋ and ẍ, respectively.
Here, we denote (̂·) as the estimated value of (·), (·)H as
the transpose of the vector or matrix (·) and diag(·) as the
diagonal matrix created from the elements of (·).

B. Seakeeping Analysis–Wave-Induced Vessel Motion

In the scope of our study, we are interested in: i) estimating
wave characteristics and the vertical motions of a vessel, i.e.,
the vertical displacement at the centre of gravity (heave) and
rotation (pitch), induced by sea waves, as illustrated in Fig. 1a;
and ii) investigating the development of a new algorithm for
the resulting input-state-parameter estimation problem; and
iii) validating using experimental data. We employ the sim-
plified seakeeping analysis in [19] describing vessel motions
for heave w and pitch θ under the influence of a unidirectional
regular wave. Notably, as we demonstrate in Section IV, the
model remains valid for the scaled-model experiments we
conducted. The equations of motion can be written in the form
described in [19] and given below:

2T

g
ẅ +

A2

kBα3ω
ẇ + w = aPw sin(ϖt+ ϕw) = pw(t), (1)

2T

g
θ̈ +

A2

kBα3ω
θ̇ + θ = aPθ sin(ϖt+ ϕθ) = pθ(t). (2)

Here T and B are the draught and the breadth of the vessel,
g = 9.8 m/s2 is gravitational acceleration, ω is the wave
frequency, k = ω2/g is the wave-number, A is the dimension-
less sectional hydrodynamic damping ratio, α is dimensionless
parameter depends on the Froude number (speed–length ratio)
Fn = V/

√
gL and vessel length L, a is wave amplitude,

pw(·) is the input heave force with amplitude aPw and phase
offset ϕw, pθ(·) is the input pitch moment with amplitude
aPθ and phase offset ϕθ, ϖ is the encountered frequency.
The relationship between the encountered frequency (that
experienced by the vessel) and the sea wave frequency is given
by the Doppler shift:

ϖ = ω − kV cos(β) = ω − ω2V
cos(β)

g
, (3)

where V is the vessel forward speed, and β is the encountered
angle between the vessel heading and the wave propagation
direction. The other vessel parameters are given by [19,
pp. 63]:
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III. PROBLEM FORMULATION

A. Problem Statement

In this work, we are interested in estimating the character-
istics of a regular wave (the input), including its amplitude a
and frequency ω impacting on a moving vessel via onboard
displacement sensors measuring heave and pitch at the vessel
centre of gravity. We also want to estimate the encountered
wave characteristics impacting on the vessel, including the
input heave force pw(·) and the input pitch moment pθ(·) and
the vessel’s vertical displacements of heave w and pitch θ over
time (the state). Importantly, we aim to estimate the waterline
breadth (B) and draught (T ), which are: i) bounded and time-
varying, and ii) depend on the instantaneous wetted surface,
vessel buoyancy, payload, and hydrodynamic characteristics
(the parameters). For simplicity, we consider a vessel en-
counter angle β ≥ π/2 rad, there is a 1-to-1 mapping between
the encountered frequency ϖ and the input frequency ω.

B. Formulation of Input-State-Parameter Estimation

We can reformulate the problem of estimating a regular
wave and the vertical motions of a vessel as a joint input-state-
parameter estimation problem for a simplified hydrodynamical
system [14], [18], [20], [21]. Since we can assume that the
coupling between motion components is negligible [19], the
heave and pitch in (1) and (2) can be considered as two single-
degree-of-freedom (SDOF) spring-mass-damper systems, typi-
cally used to model the structural dynamics [11]. In particular,
the system can be modelled as two pseudo mass-spring-
damper systems (see Fig. 1b). Thus, we can formulate a model
for the vessel experiencing heave and pitch motion, wherein
the state x and the input p(t) can be either w and pw(t) or θ
and pθ(t), respectively, as:

m(η)ẍ(t) + c(η)ẋ(t) + x(t) = p(t) (4)

where η ≜ [B, T, ω]H ≜ [η1, η2, η3]
H ∈ Rnη

+ is the unknown
parameter with nη = 3, and

m(η) =
2η2
g

, c(η) =
g[A(η)]2[

η1[η3]3[α(η)]3
] (5)

are pseudo-mass and pseudo-damping constant of the struc-
tural system with pseudo-stiffness coefficient equal to unity,

α(η) = 1− V η3
cos(β)

g
, (6)

k(η) =
[η3]

2

g
, (7)

A(η) = 2 sin(0.5η1k(η)α
2(η)) exp(−η2k(η)[α(η)]

2). (8)

Importantly, our formulation is different from the common
normalisation technique for estimating parameters in [18],

[20], [21] where η2 =
m(η2)

mtruth
and η1 =

c(η1)

ctruth
which

assumed that there is no correlation between the unknown
mass m(·) and the unknown damping c(·), in addition to
the linear relationship between the unknown damping c(η)
and η. In contrast, as shown in (5) and (8), our formulation
accommodates the correlation between pseudo-mass m(·) and
pseudo-damping c(·) which depends on η2, and the relation-
ship between c(η) and η is non-linear.

Selecting the state vector x = [x, ẋ]H ∈ Rnx with nx = 2,
(4) can be discretised to obtain:

xk+1 = D(η)xk +E(η)pk +Qk (9)

where

D(η) =

[
1 △

−△/m(η) 1− c△/m(η)

]
,

E =

[
0

△/m(η)

]
,

Here, △ is the measurement time step and Qk ∼ N (0,ΣQ)
is the process noise. N (µ,Σ) denotes a Gaussian distribution
with a mean of µ and a covariance of Σ.

Suppose that we can measure the displacement of x, then
its velocity and acceleration can be derived from displacement
by definitions, i.e.,:

ẋk =
xk − xk−1

△
, ẍk =

ẋk − ẋk−1

△
.

Since all the velocity and acceleration measurements can be
computed from the displacement measurements, the measure-
ment vector o = [o, ȯ, ö]H ∈ Rno with no = 3 follows:

ok = G(η)xk + J(η)pk +Rk (10)

where

G(η) =

 1 0
0 1

−1/m(η) −c(η)/m(η)

 ,

J =

 0
0
1

m(η)

 ,

and Rk ∼ N (0,ΣR) is the measurement noise.



Algorithm 1: Extended-Augmented KF (EAKF)
Input: xa

k−1, Pk−1, ok, f(·), h(·)
Output: xa

k, Pk

/* 1. Time update */
1 Compute D̄a

k−1 via (13)
2 x̂a

k = f(xa
k−1); P̂k = D̄a

k−1Pk−1(D̄
a
k−1)

H +Σa
Q

/* 2. Measurement update */
3 Compute Ḡa

k via (13)
4 Lk = P̂k(Ḡ

a
k)

H
(
Ḡa

kP̂k(Ḡ
a
k)

H +ΣR

)−1
;

5 xa
k = x̂a

k + Lk

(
ok − h(x̂a)

)
; Pk = P̂k − LkḠ

a
kP̂k.

We propose using the Extended Augmented Kalman Filter
(EAKF) by augmenting the unknown input force p with np =
1 and the unknown parameter η into the state, i.e.,

xa
k = [xH

k pk ηH
k ]H .

From (9), (10), the augmented state equation is obtained as:

xa
k+1 = Da(η)xa

k +Qa
k, (11)

ok = Ga(η)xa
k +Rk, (12)

where

Da(η) =

 D(η) E(η) 0nx×nη

0np×nx
Inp

0np×nη

0nη×nx
0nη×np

Inη

 ,

Ga(η) =
[
G(η) J(η) 0no×nη

]
,

Qa
k ∼ N (0,Σa

Q) is the Gaussian process noise with zero mean
and a covariance matrix

Σa
Q =

 ΣQ 0nx×np
0nx×nη

0np×nx
Σp 0np×nη

0nη×nx
0nη×np

Ση

 ;

with Σp ∈ Rnp

+ is the initial estimation covariance noise of
the input force p; Ση = diag([Ση1 , Ση2 , Ση3 ]) ∈ Rnη×nη

+ is
the covariance of unknown parameters η = [η1, η2, η3]

H .
Let f(xa) = Da(η)xa and h(xa) = Ga(η)xa, by linearis-

ing the component η in (11) and (12), we have:

D̄a
k−1 =

∂f

∂xa

∣∣∣∣
xa
k−1

, Ḡa
k =

∂h

∂xa

∣∣∣∣
x̂a
k

. (13)

For completeness, the Extended-Augmented Kalman Filter
(EAKF) is provided in Algorithm 1.

C. Formulation of Parameter Sharing Estimation

As discussed in Section III-B, the heave and pitch mo-
tions can be modelled using two decoupled SDOF systems.
Consequently, we can use Algorithm 1 to estimate the input-
state-parameters using either heave or pitch measurements.
Interestingly, we observe in (1), (2), (5) that both heave and
pitch systems share the same unknown value of η for pseudo-
mass m(η) and pseudo-damping constant c(η). Therefore,
to improve estimation accuracy, we propose sharing the es-
timated η value across two SDOF systems (heave and pitch).

Algorithm 2: Parameter-Sharing Extended-
Augmented Kalman Filter (PS-EAKF)

Input: wa
k−1, Pw,k−1, ow,k; θ

a
k−1,Pθ,k−1, oθ,k; f(·), h(·)

Output: wa
k, Pw,k,θ

a
k, Pθ,k

/* 1. Compute heave */
1 η̄w,k−1 := ηθ,k−1 // share ηθ,k−1 from pitch
2 w̄a

k−1 := [wH
k−1 pw,k−1 η̄w,k−1]

H // update
heave

3 wa
k, Pw,k := EAKF

(
w̄a

k−1,Pw,k−1,ow,k, f(·), h(·)
)

/* 2. Compute pitch */
4 η̄θ,k−1 := ηw,k // share ηw,k from heave
5 θ̄

a
k−1 := [θH

k−1 pθ,k−1 η̄θ,k−1]
H // update

pitch

6 θa
k, Pθ,k := EAKF

(
θ̄
a
k−1,Pθ,k−1,oθ,k, f(·), h(·)

)
/* 3. Compute η3 ≜ ω via FFT and (3) */

7 if k ≥ N
(1)
ω & mod(k,N

(2)
ω ) = 0 then

8 ϖ̂ := FFT(pθ,k);
9 η3,θ,k := Solution of (3) given ϖ̂.

Let w = [w, ẇ]H be the heave state, and wa =
[wH

k pw,k ηH
w,k]

H be the augmented heave state with the un-
known heave input pw and heave parameter ηw, and ow be the
heave measurement vector. Likewise for pitch, let θ = [θ, θ̇]H

be the pitch state vector, and θa = [θH
k pθ,k ηH

θ,k]
H be the

augmented pitch state vector. Then, the proposed Parameter-
Sharing Extended-Augmented Kalman Filter (PS-EAKF) is
provided in Algorithm 2. In particular, the two SDOF-system
estimations are executed sequentially from heave to pitch.
Further, we share the estimated ηθ,k−1 at time k − 1 from
the pitch estimation results to improve the heave estimation
results at time k (see lines 1−3), and share the newly estimated
ηw,k from the heave estimation results at time k to improve
the pitch estimation results at time k (see lines 4− 6).

Estimating Wave Frequency (ω). The unknown input forces,
pw and pθ, are estimated directly as part of the state in the PS-
EAKF filter. Subsequently, we apply the fast Fourier transform
(FFT) to extract its amplitude (p̂w,max, p̂θ,max), encountered
frequency (ϖ̂), and phase (ϕ̂w, ϕ̂θ). For a vessel encounter
angle β ≥ π/2 rad, the input wave ω̂ ≜ η̂3 can be estimated
directly from ϖ̂ using (3). Therefore, in this work, we use the
FFT algorithm to directly estimate η3,k from the estimated
input force p̂w,k and p̂θ,k when k ≥ N

(1)
ω (see lines 7).

Notably, since the input frequency ω is an unknown constant
and performing the FFT is computationally expensive, we
propose estimating ω every N

(2)
ω steps instead of every time

step to improve computational efficiency.

Estimating Wave Amplitude (a). Given the estimated η̂, we
can compute P̂w(η) and P̂θ(η) (see Section II-B). Hence, we
can compute the estimated wave amplitude â as:

â =
1

2

(
p̂w,max

P̂w(η̂)
+

p̂θ,max

P̂θ(η̂)

)
. (14)



Subsequently, we can re-update the input force amplitudes
from the newly computed wave amplitude â in (14), i.e.:

p̂w,max = âP̂w(η̂); (15)

p̂θ,max = âP̂θ(η̂) (16)

IV. SEAKEEPING EXPERIMENTAL VALIDATION

A. Scale-Model Experimental Settings

Physical measurement experiments were performed in the
Australian Maritime College’s Towing Tank facility using a 1:5
scale model of a rigid hull inflatable boat (referred to hereafter
as the AMC dataset). These experiments included regular head
seas seakeeping tests at various encounter frequencies and
wave heights. A single flap-type wave maker, fitted at one end
of the tank, was used to generate the desired sea conditions.
The model was secured to the Towing Tank carriage and towed
along the length of the tank at a constant speed, and allowed to
freely heave and pitch in response to encountered waves (all
other DOFs were constrained). The model and experiments
were prepared and conducted according to the International
Towing Tank Conference procedures [22], [23].

TABLE I
VESSEL PARTICULARS

Length (m) L 7.00
Breath (m) B0 2.77
Draught (m) T 0.35
Longitudinal
Centre of Gravity (m) CoGx 2.11

Vertical Centre
of Gravity (m) CoGz 0.79

Fig. 2. Vessel’s dimensions in meters. COG is the vessel’s centre of gravity.

In order to demonstrate the application of the proposed PS-
EAKF, we consider the case of a regular wave with amplitude
a = 0.15 m and wave frequency of ω = 2.109 rad/s1. The
full-scale particulars of the vessel provided in Fig. 2 and
Table I, including the vessels with length L = 7 m, maximum
waterline breadth B0 = 2.77 m, longitudinal centre of gravity
CoGx = 2.11 m, vertical centre of gravity CoGz = 0.79 m.
Notably, the averaged breadth B = 1.47 m and averaged
draught T = 0.35 m are unknown to the filter in our problem
setting and need to be estimated. The vessel is moving with a

1Notably, due to wave reflection at the end of the tank, the generated wave
may contain other frequencies and the wave amplitude may not be at 0.15 m.

Fig. 3. The ratio of estimated unknown parameter η ≜ [B, T, ω]H and its
ground truth over 20 MC trials using PS-EAKF.
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Fig. 4. Comparison results for estimating the input wave amplitude using
different filtering methods over 20 MC trials (note: the y-axis is truncated).

forward speed V = 4 m/s with an encounter angle β = π rad.
The vertical displacement (heave) and rotation (pitch) of the
vessel about the centre of gravity (CoG) is obtained using
linear variable displacement transducers. The measurement
sampling rate is Fs = 447.2 Hz, and the total time is 31.6 s.
The unknown B ≜ η1, T ≜ η2, ω ≜ η3 are initialised

by sampling from the uniform distribution U
(
[
B0

2
,
2B0

3
]
)

m,

U
(
[
CoGz

8
, CoGz]

)
m and U

(
[0, 3]

)
rad/s, respectively.

We compare the proposed PS-EAKF (unknown B and
T ) with an ideal counterpart using known B and T values,
namely PS-EAKF (known, ideal). Additionally, we compare
our results with the conventional method where B and T
are known and the discretised unknown input frequency ω
for estimation ranges from [0.1, 0.2, . . . , 2.5] rad/s, where sea
wave state is estimated using the Adaptive Kalman Filter [4],
[24] (named Conventional). Additionally, to demonstrate the
stability of our PS-EAKF, we report mean values from 20
Monte-Carlo (MC) trials.

B. Results

Fig. 3 shows the ratio of the estimated unknown parameter
η versus its ground truth over 20 MC trials for the AMC
dataset using the proposed PS-EAKF filter. It demonstrates
that the estimated η̂ = [η̂1, η̂2, η̂3]

H gradually converges
to its ground-truth value, i.e., its ratio converges to unity.
Fig. 4 depicts the estimated values of wave amplitude (â) over
time using different methods; the results further confirm the
effectiveness of our proposed algorithm. Notably, PS-EAKF
converges faster than the conventional method with known
vessel parameter values. The detailed comparison results are
provided in Table II; here, the estimated vessel parameters are
averaged over the last 2.98 s (equal to one wave period) such



TABLE II
ESTIMATED RESULTS VERSUS TRUTH USING DIFFERENT FILTER METHODS 20 MC TRIALS.

Estimates
Input-State
-Parameters Truth PS-EAKF PS-EAKF

(known, ideal) Conventional

Vessel
Parameters

B (m) 1.470 1.492 - -
T (m) 0.350 0.373 - -

Sea
Wave

ω (rad/s) 2.109 2.129 2.129 2.092
a (m) 0.150 0.156 0.151 0.151

Encountered
Wave

ϖ (rad/s) 3.921 3.977 3.977 3.877
pw,max (m) 0.071 0.070 0.070 0.073
pθ,max (rad) 0.039 0.040 0.040 0.040
ϕw (rad) 4.263 4.675 4.489 4.225
ϕθ (rad) 5.834 5.950 5.753 5.795

a) Heave displacement

c) Pitch displacement

b) FFT of the estimated heave input force

d) FFT of the estimated pitch input force
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Fig. 5. Estimated results using the PS-EAKF filter for estimating: (top) heave, and (bottom) pitch using the AMC dataset.

that all estimation methods have converged and subsequently
averaged over 20 MC trials.

The results demonstrate that PS-EAKF can estimate the
input-state-parameters of this system reasonably accurately.
In particular, we can correctly estimate the vessel parameters,
B and T , with a less than 6% estimation error. Further, the
proposed PS-EAKF can reliably estimate the sea wave and the
encountered wave, with results comparable with the PS-EAKF
(known, ideal) and the Conventional filtering methods, even
though we do not need to know the vessel parameters.

Furthermore, Fig. 5 provides the detailed estimation results
of displacement and input force using the PS-EAKF filter
for heave and pitch. The results show that using the PS-
EAKF filter; we can estimate the input-state of this system
reasonably accurately. Notably, the proposed method can accu-
rately estimate the input wave frequency ω with an estimation
error less than 1%. We also observe that the PS-EAKF filter
overestimates the amplitude of the heave input force, while
underestimate the amplitude of the pitch input force. This
can be attributed to our measurement noise assumption not



matching the real-world noise from the AMC dataset. We also
observe multiple peaks from the FFT plots in Fig. 5b and
Fig. 5d. One hypothesis is that the measurement data from
AMC dataset are noisy and non-Gaussian leading to errors in
the frequency estimation and resulting multiple peaks in the
FFT plots.

V. CONCLUSIONS

We reformulated the problem of estimating sea-state with
onboard sensor measurements from a moving vessel when pa-
rameters of the wave-vessel model (i.e., draught and breadth)
are a priori unknown and need to be dynamically estimated
as an input-state-parameter estimation of pseudo-mass-spring-
damper systems problem. We developed a Parameter-Sharing
Extended-Augmented Kalman Filter for solving the problem
and validated its favourable performance. Our experimental
results from a model-scale test program demonstrated the
proposed algorithm’s capability to achieve a similar estimation
performance compared to the conventional methods for which
accurate information of the dynamic characteristics of the
vessel is available. Our future work aims to investigate more
challenging sea conditions (e.g., irregular seas) and examine
PS-EAKF performance relying solely on indirect measure-
ments (e.g., using accelerometers) and augment the process
noise as a part of state [8].
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