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Abstract—Recent development of the multi-sensor generalised
labelled multi-Bernoulli (MS-GLMB) tracking algorithm allows
joint estimation of target trajectories adjunct to clutter rate and
detection probability. Nevertheless, it requires prior knowledge
of new birth target distribution which might not be available
in certain tracking scenarios. Conversely, another algorithm has
been proposed to handle unknown birth statistics using multi-
sensor measurement and a Gibbs sampler, but not be able to
estimate clutter rate and detection probability. In this paper,
we propose a multi-sensor multi-target tracking algorithm to
handle unknown clutter rate, detection profile, and statistics
of new birth targets. Our algorithm assumes linear Gaussian
property on the dynamic and measurement models for closed-
form analytic computation. Experiment with a 3-D tracking
scenario demonstrates the robustness of our algorithm.

I. INTRODUCTION

Reliable clutter statistics and detection profile are important
for accurate tracking results. Common practice assumes this
information is available to the filters, which can be from prior
knowledge, learnt from similar scenarios, or parameter fine-
tuning. However, learning or tuning for this information could
be difficult and tedious. In random finite set (RFS) tracking
paradigm, estimation of clutter statistics and detection prob-
ability can be performed by modelling clutter as a different
type of targets and augmenting the detection probability to
the target state-space. Methods based on this approach have
demonstrated their robust tracking capability in [1]-[8].

Birth statistical information is also crucial for tracking.
This information is the prior knowledge of where new targets
appear in the tracking region. In practice, birth statistic is
assumed to be known beforehand and supplied to the filters
to perform tracking. Nevertheless, in many applications, new
births could appear anywhere in the target tracking state-space.
Hence, the birth statistic is uninformative, which degrades
the performance of the filters due to high uncertainty. One
approach is to use partially uniform birth model [9] while
another is to use birth distribution that is constructed from
the past measurements [10], [11]. The latter approach is
straightforward in single-sensor tracking where each new birth
target can only generate at most one measurement. Never-
theless, in multi-sensor tracking, a new birth target can be
detected by multiple sensors. Hence, the task of generating
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birth statistic is much more difficult. Recently, a multi-sensor
adaptive birth solution has recently been proposed in [12]. It
uses a Gibbs sampler to generate highly probable components
of the birth distribution. These components are constructed
using combinations of measurements from different sensors.

In this work, we propose an adaptive filtering algorithm
that can effectively perform multi-sensor multi-target tracking
with unknown detection profile, clutter and birth statistics
altogether. We base our solution on the robust MS-GLMB filter
[13] which consists of a bank of robust cardinalised probability
hypothesis density (CPHD) filters [3] for clutter estimation and
a MS-GLMB filter [14] to estimate detection probability and
target states. The method in [12] is used to construct new
birth distribution from multi-sensor measurements. Our algo-
rithm assumes linear Gaussian property on the dynamic and
measurement models for closed-form analytic computation.

The structure of our paper is as follow. In Section II,
we provide discussions on the GLMB-based filters and the
robust tracking approaches. Section III presents the detailed
formulation of our solution. In Section IV, we conduct a
numerical study to show the effectiveness of our approach.
Finally, Section V concludes the paper.

II. BACKGROUND

Early works on RFS tracking filters (e.g., the probability
hypothesis density (PHD) or CPHD filter) did not include
target identities implicitly in their formulations. Hence, in
principle, they are not able to estimate target trajectories.
The first systematic formulation of the labelling concept for
RFS tracking filters was introduced by Vo and Vo [15].
This formulation led to the invention of the GLMB filter
[16], [17] which is a tractable exact closed-form Bayes filter
for multi-target tracking [18]. Notably, the filter has been
implemented to track over one million targets with only off-
the-shelve computing hardware [19]. Further, a GLMB filter
that can handle multi-sensor measurements has been proposed
in [14]. This algorithm is readily applicable to problems with
a large number of measurements since its complexity is linear
in the total number of measurements from all sensors. An
GLMB-based algorithm proposed in [20] is able to perform
multi-target estimation over multiple scans, which is recently
developed to also handle multi-sensor measurement [21]. In
practice, GLMB-based filters have been applied to solve
problems ranging from biological cell tracking [22]-[24],
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control/automation [25]-[29], crowd surveillance [6], [30]-
[35] to space debris tracking [36]—[38].

For single-sensor tracking, Mahler et al. proposed methods
to estimate clutter rate and detection probability of targets
using the CPHD or PHD filter in [3]. These filters render
low complexity due to their formulations that do not require
solving the data association problem. Similar approach based
on the multi-Bernoulli filter has also been proposed in [4].
Conversely, detection probability and clutter statistics can also
be estimated by the GLMB filter as proposed in [6]. However,
the complexity naturally increases since clutter needs to be
included in the data association scheme. In terms of accuracy
and complexity balance, the bootstrapping algorithms which
combine the first order approximation filters (i.e., PHD or
CPHD filter) and the labelled RFS filters (i.e., GLMB filter)
are promising robust tracking solutions. In [8], at each time
step, a robust CPHD filter is used estimate the clutter rate
and average detection probability, which are then bootstrapped
into the GLMB filter for multi-target state estimation. This
bootstrapping method has also been applied to multi-sensor
tracking in [13]. Although, in [13], target detection probability
is estimated by the MS-GLMB filter (by augmenting target
detection probability to the state-space).

When useful birth statistics are not available, uniform birth
distribution can be assumed. However, such birth model leads
to high uncertainty, which could degrade the filter perfor-
mance. In practice, current measurements are used to construct
the birth distribution at the next time step [10], [11]. In single-
sensor tracking, this measurement-driven approach is straight
forward. Nonetheless, in multi-sensor tracking, measurement
combinations from different sensors need to be considered.
A recent method in [12] proposed using Gibbs sampler to
select significant components of the new birth distribution. Es-
pecially, calculations of the conditional sampling distribution
and target state distribution can be done analytically if linear
Gaussian dynamic and measurement models are assumed.

III. AN ADAPTIVE MS-GLMB FILTER
A. Filter Schematic

The schematic of our filter for one time frame is given in
Fig. 1. This filter shares similar structure to the robust MS-
GLMB filter in [13] with an additional Gibbs sampler module
to generate multi-target birth distribution from the posterior
GLMB density and the multi-sensor measurement set.
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Fig. 1. Schematic of the proposed adaptive multi-sensor filter.

B. Notations
b'e

We denote the set exponential as [h()} [Lex M=),
and the inner product as (f,g) = [ f(z)g(x)dz. The general-
isation of the Kronecker delta and set 1nclus10n functions are
defined respectively as

5y(X){(1)’ i;}}j and 1y(X){

We use bold upper case symbol (e.g., X) to denote the labelled
set of objects, and bolded lower case x for a labelled object.
We let £ denote the label extraction function, i.e., £(x) = ¢
for & = (x,¢) with € X and ¢ € L (X is target state-space
and LL is a discrete label space), and F(X) denote sets of finite
subsets of X. The “+4” sign denotes the next time step.

1, XCY

0, otherwise

C. The Robust MS-GLMB Filter
A GLMB density can be written as [15]

Z w96, (£ (X)) [p(ﬁ)}x
(1,&EF(L)XE
where I represents a set of labels, £ € = is a history
of association maps up to time k, and A (X) equals 1 if
| X| = |£(X)| and 0 otherwise. Each p(¢)(-, ¢) represents the
distribution of a target state with [ p(®) (z,¢)dz = 1, and the
non-negative weights w(-¢) satisfy,

Z Zw(l’g) =1.

IeF(L) {€E
In the robust MS-GLMB filter, the target detection probability
is also augmented to the state-space. Hence, each labelled
single-target state is represented by x = (z, a, ¢) where z is
the kinematic state of the target, o = [a1, ..., ay] € [0,1]V
the detection probability of the target on V' sensors (assuming
there are V' sensors in the observation system), and ¢ is
its distinct label. We assume the probability density on the
kinematic state of the target and the detection probability
are independent, i.e., p© (z, a, £) = p© (x, £) [T'_, p© (avs).
The set of measurements observed from a sensor s is denoted
as Z705) = 1. | ()| € Z. Given the single-sensor likelihood can
be written as [131
a.g® (z|(z .
(v, a,0) = { Sg'%<a'(>(]z|_7'() 2D =1 12|

1—as, j=0.

where ¢(*) is the single-target likelihood of the sensor s and

#(*) is the clutter rate estimated by a robust CPHD filter,
following [14], we make the following abbreviations:

@

3)

(s,9)

4
{Z |Z()|} ) ()

z= (Z“),-.-,Z(V’) e (9“),...,6(”); 5)
o) £ 9(1)(1) X X@(V)(I);G) 2 oM. .. X@(V); (6)
1%
1@(1 9) 2 H 16(5)(1) (9(S)> ; (7)
s=1
@, V) N
?l)( ’ Hw( I (2, 0); (8)
where 0(*) € ©(®) is a 1-1 positive map 6(*) :L—{0 :|Z("")|}.
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For a prior multi-target density given in (2), the filtering
density given a set of multi-sensor measurement Z is [13]

T (X4 |Z4) o A(XS)
X
Z w([,&)w(zlfvl+79+)5l+ [£(X)] [p(ZE+9+)} . 9)

161,04
where I € ‘F(]L) ,5 S E,I+ S f(L+) ,0+ € ®+ (I+),

1,6,1..,0 _ I—I4p _ NIy
w(Zf o) = lo, (1) (04) {1 - Pé‘g)} [Pé‘g)}

X [1—rp Pl ifr‘“[w“ Gﬂ " a0

PE ()= (p© (-,0), Ps (-, 0)), (11)
\%
G50 (0= / 79 (2,0 T 1O (o)
s=1
xww*“ (x,a, ) dxdon.y, (12)
ps (2,0, 0) = / Ps (¢ fs (2]¢, 0p© (¢, 0) dC
XH/ (5) as|a3)das, (13)

x,a,l
ﬁﬁf) (z,0,0) =1L(0) % +1s, () p.4(z,0),(14)
Py (£)
_ 04 (¢
(€.04) Y (@,0,0) v N, a,0)
pZ+ (x,a,f): 1/}(5 0+)( ) ’ (15)

Ps is the survival probability of a target, fs  is the single-
target state transition density, fgi is the transition density
of the detection probability of target on a sensor s, B is the
space of new birth labels, rp 4 is the existence probability of a
new birth and pp ; is the distribution of its state. For tractabil-
ity, high-weight components (I,&, I ,6,) are sampled using
a Gibbs sampler. For efficiency, we use the sub-optimal Gibbs
sampler presented in Algorithm 2 of [14]. Note that, as seen in
Fig. 1, in addition to estimating the detection probability, the
robust MS-GLMB filter also estimates the clutter rate of each
sensor from a bank of CPHD filters, which differs it from the
the standard MS-GLMB filter [14].

D. The Adaptive Birth Gibbs Sampler

For compact notation, we introduce the following defini-
tions. For a sensor s, we define J*) = {1,....,|Z(*)|} such
that each j(*) is a unique index of the enumerate measurement
set Z), and J (=) — = {0} U J® w1th 0 index denotes the
miss-detection. We abbreviate J, £ J(l) J(V
J 2 W xox 5V [12] (we refer to J as a multi-sensor
measurement index tuple).

Note that the filtering formulation presented in previous
subsection assumes an labelled multi-Bernoulli (LMB) birth
model where each hypothesized track has an existence proba-
bility rp 4 and a state distribution pp 4. In this context, this
LMB birth distribution can be written as

I+ ={0rB+(ly),pp 4 (24,04, 04|Z5))} ey eB, . (16)

The space of Z; is large since it contains the combination
of measurements on different sensors and the miss-detection.
Hence, our objective is to sample for the components of
S+ with high existence probability rp . Note that for
v

PB+ (T4, 4, 04) = pp (24, 04) [[4=; PB4+ (s 1), assum-
ing we have the prior knowledge on pp 1 (e +), the remaining
task is to compute pp 4 (x4, £+ ). The rest of this subsection is
dedicated to show how to construct the sampling distribution
and to compute the resulting rp 1 and pp 1 (v4,¢+). More
details can be found in [12].

Given the filtering GLMB density (9), the association prob-
ability of a measurement z](f)) n (the probability that this
measurement has already been assigned to a target) is

ra) o D0 1y (GOS0,
&, 14,04
Conventionally, we set 74(0) = 0 [12]. The unassociation
probability of a multi-sensor measurement index tuple J is

ry oo [1—ra]’*. (18)

A7)

Conversely, the spatial distribution of a new birth with label
{4 (at the current time step) due to measurement tuple Z; can
be written via Bayes rule as [12]

P, L)vs (2, 04)
J

5 )(5+)

£4)). The birth distribu-

pe+(x, 04 |Z) = ; 19)

“(J J
where 05 (¢4) = (pi (-, £4), 05" (-
tion at the next time step is then

Pt (s L Z) = / Fil@sle s o (2, 04| Z)dz. (20)

The existence probability of a birth that is generated by a
multi-sensor measurement index tuple J is written as

TB,+(€+) = min (TB,maa:a )‘B,+ X 72&3],)+(€+)) ) (21)
where Ap ; is the number of expected births and [12]
7(J)
. ru(J 4
() = s ) )
ZJ’G.]IO ru(J )y (4y)

Since we are interested in sampling for the components of
f 4 with high rg  (£,), we need to sample for £, € B,
from some p(¢) such that

ply) crp o (04) o ip () (NS, (23)

According to Theorem V.1 in [12], for J(=%) =
(GO, ..., 56D 56+ 50V we have

p(l1) o p(GO1T ) o (1= ralGONPF (€4). 24

Sampling from the conditional distribution p(j(*)|J(=*)) is
straight forward using a Gibbs sampler.

By assuming linear Gaussian kinematic measurement
model, i.e., g (z|(z,£)) = N(z, Hz, R*®)), and a Gaus-
sian birth kinematic prior distribution, i.e., pp(x,fy) =
N (z, juo, Py), the conditional distribution p(5(*)|J(=%)) can
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be computed in closed-form as [12]
(1 — Pg)) det(MJ(—w)_%fIJJ(,S), j(s) =0

[(2m)” det(2) det(R(S))] 1

x(1 = ra(G)) 2

2
p(i*T) o

i) >0
i 25)
where n( o) is the measurement dimension, Pg ) is the average

detection probability computed from the filtering density (9),
%(%) is the estimated clutter rate of the st* sensor, and

1 _
®; =exp (—2(0J — by M 1b1)> ; (26)

v ’ T 7 -1 ’
M;=Pt+ Y (H(s >) (R(S >) HE) . 27
s'=1,j(+")>0
v AT ,
by = Po_l,UO + Z (H(s )) (R(s )) (S )7 (28)
s'=1,5(:")>0
v NT
¢y = pg Py tpo + Z (Z](?%) (R(S )> (fs')> 29)
s'=1,5")>0

Further, assuming the linear Gaussian kinematic state tran-
sition model, i.e., f(z4|z) = N (x4, Fz, @), the component
of the birth distribution is given as

PB4+ (@4, 4|Zy) = N(2; pp, Pp), (30)
pp=FM;'b; and Pgp = FM;'F' + Q.
Given the closed-form expression of the weight 1/_)(2‘? (y), ie.,
_1
14 2
D (04) = | det(Po) det(My) H ” det(R")
v v (s")
_p® Pp
x H 1-Pp H K6 ( (s’)) 2,
s'=1,76")>0 s'=1,7")>0 (")
(31

rp,+(¢4+) can be computed using (21).

IV. EXPERIMENT

In this experiment, we set up a tracking scenario with 12
distinct targets moving in a 3-D space as in [21]. There are
3, 3, 2, 2, and 2 targets appear at time 1, 20, 40, 60, and
80, respectively. The tracking duration is 100 time steps (1s
per time step). For the first 50 time steps, the true detection
probability is 0.8 and the true clutter rate is 70 (for tracking
scenarios with low detection threshold). For the remaining
time steps, they are 0.3 and 20 (for tracking scenarios with
high detection threshold), respectively. The targets move with
constant velocity model. Hence, the transition density of the
kinematic state is f(zy|r) = N (x4, Fz, Q) with

1 A ) At A
F:Ig@[o :|,Q_O' Ig@ A43 A22 3 (32)

I,, is the n-D identity matrix, and ® denotes the Kronecker
multiplication. We set o, = 5 m/s?> and A = 1s in this
experiment. The detection probability is modelled by beta

distributions. The initial parameters of the distributions are
chosen such that we have an average detection probability
of 0.5 for each track. There are four 3-D positional sen-
sors in the system with each has the surveillance region of
[~1500m, 1500m]® (where A™ £ A x ... x A for an arbitrary

n times
space A). The likelihood function for each sensor is given as

9 (:|(@,0) = N'(z, HOz, R), (33)
where H®) = I3 ® [1 0] and RS =
diag([ 20> 207 202 )).

For computing the measurement-driven birth distribu-
tion, we set 7Tpmar = 0.03 with the number of
expected birth for each time step, Apy, is 1. The
prior kinematic distribution of birth is Gaussian with
mean po = [0 0 0 0 0 0]7 and covariance
Py = diag([ 2000* 50% 2000% 502 2000 50% ]. For
the first time step, the average detection probability ]51(35) for
a sensor s is set to 0.5 and #(®) = 5/7(5) with #(®) is
the volume of the surveillance region. At each time step,
we sample 10,000 GLMB components using the sub-optimal
Gibbs sampler. For measurement-driven birth, we generate
1,000 samples of new birth components. We discard birth
components that are generated by multi-sensor measurement
tuples with more than 1 miss-detection. In Fig. 2, we show the
true and estimated tracks from our method in 1 Monte Carlo
(MC) run. We use the sub-optimal estimator proposed in [15]
to extract track estimates although trajectory smoothing can
also be further applied [20].
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— \
0004 N
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ym) 500 X(m)

Fig. 2. Ground truth and estimated tracks from our method.

We compare our algorithm with others including the adap-
tive birth AB-MS-GLMB [12], robust R-MS-GLMB [13],
and MS-GLMB [14]. For the filters that require prior in-
formation on the detection probability and clutter rate (i.e.,
AB-MS-GLMB and MS-GLMB), we supply them with the
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mean values (i.e., detection probability of 0.55 and clut-
ter rate of 45). For the filters that require prior knowl-
edge on the birth statistics (i.e., R-MS-GLMB and MS-
GLMB), we use a uniform birth distribution with each
component is a Gaussian density with mean pup €
[{—1000, —500, ..., 1000} x {0}]* and covariance matrix
Pp = diag([ 100> 10> 1007 10> 100? 107 ]. For
comparable computation time with other filters, we only
randomly select 50 birth components at each time step.

All algorithms are tested for 100 MC runs. To evaluate the
performance, we use the OSPA® metric [19] to measure the
distances (errors) between the estimates and ground truth sets
of tracks (see [39] for a detailed analysis on the performance
criteria). We set the metric cut-off to 100 m and order to 2
with the window length of 10. The errors for all algorithms
are presented in Fig. 3. We show the error together with its
cardinality and localisation components for better insight. In
Fig. 4, we present the estimated cardinality for each time step.
We also plot the estimated detection probability and clutter rate
provided by our method and the R-MS-GLMB filter in Fig.
5. The results are the mean values over all MC runs with the
thin broken lines show one standard deviation bounds.

Fig. 3 shows errors of the proposed method and the AB-
MS-GLMB filter are similar but lower than others for the
first half tracking duration due to the more accurate track
initiation. Nevertheless, we observe that AB-MS-GLMB is
slightly more accurate than our method. During this period,
all filters produce relatively accurate cardinality estimation,
which is due to the high detection probability of targets.

For the remaining tracking time, AB-MS-GLMB localisa-
tion error significantly increases and the cardinality is underes-
timated as shown in Fig. 4. This behaviour is also observed in
the MS-GLMB filter. It can be explained by the severely low
detection probability and the fact that the detection probability
fed to the filters is higher than the true value. These factors lead
to early track termination (hence underestimated cardinality)
and less accurate measurement to track assignments (hence
increase in OSPA® localisation error). R-MS-GLMB and our
method do not exhibit this behaviour due to their ability to
update the detection probability and clutter rate on-the-fly.
Nevertheless, R-MS-GLMB’s track cardinality estimation is
worse than ours (see Fig. 3). Overall, our method shows robust
tracking performance over the entire tracking duration.

In Fig. 5, we observe that the average detection probability
estimated by our filter and the R-MS-GLMB filter are similar
for the entire tracking duration. The clutter rate is estimated
more accurately than the detection probability. These results
confirm ones observed in [13].

V. CONCLUSION

We have proposed an adaptive filtering algorithm to track
multiple targets in unknown clutter rate, detection probability,
and birth statistics scenarios. By assuming linear Gaussian
models, our algorithm allows closed-form analytic compu-
tation of the sampling distribution and the birth statistics.
Experimental results have showed that our filter exhibits robust
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Fig. 3. OSPA® errors for different algorithms (unit is in m).
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Fig. 4. Estimated cardinality.

tracking performance in a challenging tracking scenario with
significant variation in clutter rate and detection probability.
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