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Abstract—We consider the problem of estimating unknown
input forces on structural systems using only noisy acceleration
measurement data. This is an important task for condition mon-
itoring, for example, to predict fatigue damage in a structure’s
body or to reduce transmission of vibrations in marine vessels.
In this paper, we propose a new idea to estimate an input
force with a sinusoidal form by formulating a force identification
problem without a direct feed-through system. Consequently, the
minimum variance unbiased (MVU) filter can be implemented
coupled with a fast Fourier transform algorithm to estimate
unknown input forces accurately in real-time. Moreover, when the
input force is completely unknown, the ensemble sampling method
combined with an augmented Kalman filter can be formulated
to significantly reduce computation time. Experimental results
confirm the effectiveness of our proposed methods and show that
the formulations investigated outperform other state-of-the-art
methods in terms of computational cost whilst not compromising
estimation performance.

Index Terms—Non-linear filtering, Bayes estimations, Mass-
spring-damper system, Minimum variance unbiased (MVU) fil-
ters, Ensemble Augmented Kalman filters (EnAKF).

I. INTRODUCTION

State estimation of a system plays an important role in con-

dition monitoring the structural health of various mechanical

systems in various civil, mechanical or marine engineering

applications. Very often, this estimation is implemented by

monitoring acoustic noise or structural vibration coming from

different parts of the original system. The conventional aim of

condition monitoring is in fault detection and predictive main-

tenance [1], [2]. For example, state estimation can be used to

predict fatigue damage in a structure’s body [3], or to develop a

dynamic hydraulic absorber to reduce vibration transmission

in marine vessels [4]. One of the popular methods in state

estimation is to model systems directly in the time domain,

so-called state-space modelling, by describing the relationship

between state variables and measurements via Bayes’s rules.

In particular, Bayes state estimation (or Bayes filtering) is an

online method dealing with the problem of inferring knowl-

edge about the unobserved state of a dynamic system, which

changes over time, from a sequence of noisy observations.

One of the earliest forms of Bayes filters is the Kalman

filter (KF), firstly introduced in 1960 by Kalman [5], wherein

the state dynamic and measurement models are linear, and

their corresponding variables follow Gaussian distributions.

When dynamic and measurement models are somewhat non-

linear, two conventional approximate solutions are extended

Kalman filter (EKF) [6], [7] and unscented Kalman filter

(UKF) [8], [9]. When dynamic and measurement models are

extremely non-linear, a particle filter (PF) [10]–[12] is usually

implemented.

In structural dynamics, the degrees-of-freedom (DoF) is

comprised of the displacements (positions) and velocities that

characterise the displacements of the masses related to its

initial location. Early efforts of estimating unknown structural

states using measurements of displacements and/or velocities

have been investigated in [13]–[16]. However, it is extremely

challenging to measure the system’s displacements and veloci-

ties directly in order to apply a standard Kalman filter wherein

state, and measurement variables are only displacements and

velocities. In practice, commonly available measurement data

of structural systems are only acceleration data collected at

a few DoF mass points using accelerometers [17]. Subse-

quently, various applications for estimating state variables

using Kalman filters with acceleration data only have been

proposed [18]–[20].

Besides state estimation, another important aspect of struc-

tural monitoring is identifying inputs/parameters of the sys-

tems. The EKF, which is based on linearisation of the non-

linear dynamics and measurement models, is the most com-

monly used method in several applications such as parameter

identification [21], [22], damage detection [23], [24] or up-

dating model [25] wherein the input forces are known [26].

Other techniques for identifying parameters in highly non-

linear systems use the UKF [27] or PF [28], which are com-
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putationally more demanding. Detailed comparisons between

UKF and PF filters are investigated in [29], which confirms

the effectiveness of PF compared to the EKF and UKF

for identifying parameters in highly non-linear systems [3].

However, the major drawback of standard PF is its high

computational cost; this makes a standard PF formulation

infeasible for problems with a high dimensional space such

as that with an n-DoF system. Although the modern versions

of PF (e.g., particle flow filters [30], [31]) can mitigate the

curse of dimensionality problems, an initial assumption about

distribution (PF) or mean and covariance (EKF/UKF) of the

estimated parameters is required. An incorrect initial estimate

will be detrimental to the efforts on estimation outcomes.

Moreover, possible measurement outliers can noticeably affect

the estimation performance.

The idea of jointly estimating the state and unknown in-

puts/parameters using the output measurements has emerged

recently. The early approaches include i) considering unknown

parameters as additional state variables [32], ii) using an

interactive multiple model procedure [32], iii) solving the

state estimation and model parameters identification problems

jointly by a two-step iterative procedure: first, estimate states

by assuming model parameters are known completely, then,

identify model parameters using the estimated states. See [33]

and references therein for more details. The first optimal

approach was proposed by Madapusi [34] and Gillijns [35],

which can be formulated as a minimum variance unbiased

(MVU) filter without direct feed-through (transmission) for

optimal control applications. This filter is both unbiased and

optimal. However, the MVU filter without direct feed-through

requires the unknown input force to be differentiable (e.g.,

an input force with a sinusoidal form is differentiable). The

unbiased filter with direct feed-through is also introduced

in [36] by Gillijins and De Moor and is named after its authors

as the GDF. A different approach is to augment the state with

the unknown input which leads to the so-called augmented

Kalman filter (AKF), firstly proposed in [37] for the KF, and

later generalised for the EKF in [38]. However, the AKF may

lead to untrustworthy estimation if only acceleration mea-

surement data are available [39], which can be alleviated by

using dummy displacement measurements. Another approach

to jointly estimating state/inputs is to employ the so-called dual

Kalman filter (DKF) [3], [40], for a linear state-space model

involving an accurate structural model without noise [26].

Although these filters (GDF, AKF, DKF) can estimate the

unknown input force accurately, its computational demand is

prohibitively high, which prevents its real-time implementation

for large and complex n-DoF structural systems.

In this paper, we focus on the problem of estimating an

unknown input force parameter for a large n-DoF structural

system efficiently and effectively. If the input force has a si-

nusoidal form, we propose using the MVU filter without direct

feed-through to estimate the force parameter since MVU filters

are fast, optimal and unbiased. When the input force form is

unknown, the problem is formulated as a filtering problem

with direct feed-through. One of the efficient filters for a large

Sensor Sensor Sensor

Fig. 1. An n-DoF structural system.

system is the ensemble Kalman filter (EnKF), proposed by

Evensen [41]–[43] wherein the estimated states are represented

as an ensemble of possible state vectors randomly generated

using a Monte Carlo method. The EnKF algorithm does not

require any linearisation of the model as in EKF (a first-order

Taylor series), and also does not require computing the full

error covariance matrix; this leads to noticeable computational

cost reductions. Therefore, we adapt the EnKF into the AKF

and devise the so-called EnAKF to reduce the computational

cost.

II. PROBLEM FORMULATION

A. Notations

For notational simplicity, lowercase letters denote scalar

values (e.g., x), uppercase letters denote vectors (e.g., X),

while bold uppercase letters denote matrices (e.g., X). More-

over, if x denotes displacement, then ẋ and ẍ denote its

corresponding velocity and acceleration, respectively. Further,

we use the function diag(D, i) to represent a [length(D) +
i]× [length(D) + i] square matrix, where the vector D is the

ith diagonal (relative to the main diagonal, i.e., i = 0) of the

created matrix. Further, we abbreviate diag(D, 0) = diag(D).
(·)T denotes the transpose of the vector or matrix (·).

B. The State-Space Model of an n-DoF Structural System

The dynamic motion model of an n-DoF structural system

illustrated in Fig. 1 can be described as:

MẌ(t) +CẊ(t) +KX(t) = F (t), (1)

where M denotes an n × n system mass matrix, C denotes

an n × n damping coefficient matrix, K denotes an n × n
spring stiffness matrix, F (t) denotes the n × 1 input force

vector, and Ẍ(t), Ẋ(t), X(t) are the n×1 vectors that denote

the acceleration, velocity and position (i.e., displacement) at

time t, respectively. Here, M = diag([m1,m2, . . . ,mn]),
Ẍ = [ẍ1, ẍ2, . . . , ẍn]

T , Ẋ = [ẋ1, ẋ2, . . . , ẋn]
T , X =

[x1, x2, . . . , xn]
T , F (t) = Sff(t) where Sf = [1, 01×(n−1)]

T

with 01×(n−1) denoting the 1× (n− 1) zero-vector and f(t)
is the unknown input force applied to mass m1.

As in [44], we assume that we can approximate the damping

f (c) and spring f (k) forces using the analytic functions of

relative position ǫ and velocity ǫ̇, such that

f
(c)
i = ciǫ̇i + c̃i[ǫ̇i]

3, f
(k)
i = kiǫi + k̃i[ǫi]

3, (2)

ǫ̇i = ẋi+1 − ẋi, ǫi = xi+1 − xi, ∀i = 1, . . . , n, (3)
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where ci, c̃i, ki and k̃i are constants. Hence, the damping

coefficient matrix C and the stiffness matrix K can be

approximated as followed [44]:

C = diag([c1 + c̃1(ẋ2 − ẋ1)
2, . . . , cn + c̃n(ẋn+1 − ẋn)

2])

− diag([c1 + c̃1(ẋ2 − ẋ1)
2, . . . , cn−1 + c̃n−1(ẋn − ẋn−1)

2], 1)

− diag([c1 + c̃1(ẋ2 − ẋ1)
2, . . . , cn−1 + c̃n−1(ẋn − ẋn−1)

2],−1)
(4)

K = diag([k1 + k̃1(x2 − x1)
2, . . . , kn + k̃n(xn+1 − xn)

2])

− diag([k1 + k̃1(x2 − x1)
2, . . . , kn−1 + k̃n−1(xn − xn−1)

2], 1)

− diag([k1 + k̃1(x2 − x1)
2, . . . , kn−1 + k̃n−1(xn − xn−1)

2],−1)
(5)

where xn+1 = ẋn+1 = 0.

The problem is to estimate the unknown input force f(t)
applied to the mass m1 using only acceleration measurement

data.

III. ESTIMATING AN UNKNOWN INPUT FORCE WITH A

SINUSOIDAL FORM

In this section, we present a method of estimating an

unknown input force with a sinusoidal form using an MVU

(minimum variance unbiased) filter by formulating the prob-

lem as a linear system without direct feed-through of the input

force to the measurements.

Assume that the sinusoidal force applied to the mass m1 is

f = F0 sin(w0t+ φ0). (6)

where F0 is the force amplitude, w0 is the force frequency, and

φ0 is the force phase offset. Hence, by taking the derivative

of the force, i.e.,

df

dt
= F0w0 cos(w0t+ φ0), (7)

and incorporating acceleration as one of the elements of the

state vector, i.e., X = [XT , ẊT , ẌT ]T = [XT
1 , X

T
2 , X

T
3 ]

T ,

we can discretise the continuous system in (1) into a state-

space model, as follows:





X1,k

X2,k

X3,k



 =







In In△t In△t2/2
0n In In△t

0n −
K

M
In△t In −

C

M
△t











X1,k−1

X2,k−1

X3,k−1



 (8)

+

[

02n×1

Sf

]

F0w0△t

m1
cos[w0(k − 1)△t+ φ0].

where In denotes the n × n identity matrix, 0n denotes the

n× n zero matrix, 0m×1 denotes the m× 1 zero-vector, and

△t is a discrete measurement time step. Equation (8) can be

simply expressed as

Xk = AXk−1 +Gdk−1. (9)

Here, A =







In In△t In△t2/2
0n In In△t

0n −
K

M
△t In −

C

M
△t






, G =

[

02n×1

Sf

]

,

and

dk−1 =
F0w0△t

m1
cos[w0(k − 1)△t+ φ0]. (10)

Under the assumption that the dynamic and measurement

systems are disturbed by white noise, we have the following

state-space equations without direct feed-through of dk−1 into

the measurements Yk, given by:

Xk = AXk−1 +Gdk−1 +Qk−1, (11)

Yk = HXk +Rk, (12)

where Qk−1 ∼ N (0,ΣQ) is the Gaussian process noise

with zero mean and a 3n × 3n covariance matrix ΣQ, H =
[0n×2n In], and Rk ∼ N (0,ΣR) is the zero mean observation

noise with an n×n covariance matrix ΣR. Notably, there is no

dk−1 term in (12), thus, this system is called a linear system

without direct feed-through.

The Minimum Variance Unbiased (MVU) Filter: Since

rank(HG) = 1, and rank(G) = 1, the Assumption 1 in [34]

holds. Therefore, we can apply the MVU filter as follows:

X̂k|k−1 = AX̂k−1,

Pk|k−1 = APk−1A
T +ΣQ,

R̃k = HPk|k−1H
T +ΣR,

Vk = HG = Sf ,

Fk = Pk|k−1H,

Πk = (V T
k R̃

−1

k Vk)
−1V T

k R̃
−1

k = 1, (13)

Lk = G, (14)

Pk = Pk|k−1 −GR̃
−1

k GT − FkG
T −GFT

k ,

X̂k = X̂k|k−1 + Lk(Yk −HX̂k|k−1), (15)

d̂k−1 = Πk(Yk −HX̂k|k−1) = Yk −HX̂k|k−1.
(16)

Remark 1: The estimated feed-through d̂k−1 in (16) of dk−1

in (10) has the form of the derivative of the input force f
(see (7) and (9)) since Πk = 1 in (13) and Lk = G in

(14). Therefore, it requires an additional processing step to

compute f . For example, we can use a fast Fourier transform

(FFT) algorithm to extract the unknown amplitude F0w0 and

frequency w0 of dk−1. However, if w0 is incorrectly estimated,

the estimation error of the input amplitude F0 compared to its

ground truth can be substantially large.

IV. ESTIMATING AN UNKNOWN INPUT FORCE WITHOUT

ANY PRIORS

In this section, we consider the problem of estimating the

unknown input force without any prior, by formulating the

problem as a linear system with direct feed-through of inputs

to measurements. Since the input forces are unknown, we
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cannot take its derivative to apply the discretisation method

that includes the acceleration as an element of a state as in

the previous section. Instead, by selecting the state vector

X = [XT , ẊT ]T = [XT
1 , X

T
2 ]

T , (1) can be discretised to

obtain:

[

X1,k+1

X2,k+1

]

=

[

In In△t

−
K

M
△t In −

C

M
△t

]

[

X1,k

X2,k

]

+

[

0n×1

M
−1Sf△t

]

fk. (17)

Assume that only accelerations Ẍ are measured. Thus,

based on (1) the noiseless measurement vector Y as follows:

Yk = −[
K

M

C

M
]× [X1,k, X2,k]

T +M
−1Sffk (18)

Assuming, as before, that the dynamic and measurement

systems are disturbed by white noise, we have the following

state-space equations:

Xk+1 = AXk +Bfk +Qk, (19)

Yk = GXk + Jfk +Rk, (20)

where A =

[

In In△t

−
K

M
△t In −

C

M
△t

]

, B =

[

0n×1

M
−1Sf△t

]

,

G = −

[

K

M

C

M

]

, J = M
−1Sf , Qk−1 ∼ N (0,ΣQ) is

the Gaussian process noise with zero mean and a 2n × 2n
covariance matrix ΣQ, and Rk ∼ N (0,ΣR) is the zero mean

observation noise with an n × n covariance matrix ΣR. No-

tably, we have the fk term in both dynamic and measurement

models, i.e., (19) and (20), thus, this system is called a linear

system with direct feed-through to measurements.

The Ensemble Kalman Filter Based on AKF (EnAKF):

In this work, we derive the EnAKF filter by combining the

ensemble sampling method from EnKF filter [42], [45] and

the AKF filter [37] that augments the unknown force into the

state, i.e.,

X a
k = [X T

k fk]
T . (21)

Thus, the augmented state equation is obtained based on

(19),(20):

X a
k+1 = A

aX a
k +Qa

k, (22)

Yk = GaX
a
k +Rk, (23)

where A
a =

[

A B

0n In

]

; Qa
k ∼ N (0,Σa

Q) is the Gaussian pro-

cess noise with zero mean and a (2n+1)×(2n+1) covariance

matrix Σ
a
Q =

[

ΣQ 02n×1

01×2n Σf

]

; Σf is the initial estimation

covariance noise of the input force f ; Ga = [G J ]T ;

Rk ∼ N (0,ΣR) is the zero mean observation noise with an

n× n covariance matrix ΣR.

Suppose that at time k, the state X a
k is approximated by an

ensemble of q possible states X e
k , where

X e
k ≈ {X

(1)
k , . . . ,X

(q)
k }. (24)

Then the EnAKF filter can be described using the two

following stages:

1. Forecast step:

X̂
(i)
k = A

a
X

(i)
k−1 +Q

a,(i)
k , ∀i = 1, . . . , q,

X̄ e
k = (

q
∑

i=1

X
(i)
k )/q,

Y
(i)
k = G

a
X̂

(i)
k +R

(i)
k , ∀i = 1, . . . , q (25)

Ȳk = (

q
∑

i=1

Y
(i)
k )/q,

E
x
k =

[

X̂
1
k − X̄ e

k , . . . , X̂
q
k − X̄ e

k

]

,

E
y
k =

[

Y 1
k − Ȳk, . . . , Y

q
k − Ȳk

]

,

P
xy
k = E

x
k(E

y
k)

T /(q − 1), (26)

P
yy
k = E

y
k(E

y
k)

T /(q − 1). (27)

2. Analysis step:

Kk = P
xy
k (Pyy

k )−1, (28)

X
(i)
k = X̂

(i)
k +Kk(Yk +R

(i)
k −G

a
X̂

(i)
k ), ∀i = 1, . . . , q

(29)

where A
a and G

a are defined in (22) and (23), while Q
a,(i)
k

and R
(i)
k are an ensemble of Qa

k and Rk, respectively.

Remark 2: The Kalman Gain Kk in (28) is calculated via the

covariance error P
xy
k in (26) and P

yy
k in (27) instead of the

full covariance matrix of P
xx
k with much higher dimensions.

Therefore, the EnAKF filter leads to substantially reduced the

computational cost.

V. EXPERIMENTS

In this section, we conduct two experiments to validate and

demonstrate the effectiveness of the proposed algorithm. First,

a comprehensive study of applying the MVU filter to estimate

an unknown input force with a sinusoidal form is investigated.

Second, we compare our proposed EnAKF and other state-of-

the-art methods, including AKF, DFK and GDF filters when

estimating the unknown input force without any prior. All

of the numerical experiments were conducted on a desktop

computer with an Intel(R) Core(TM) i7-6700 CPU @ 3.4 GHz

with 32 GB RAM and using MATLAB-R2019b software.

A. Experiment 1 — without direct feed-through formulation

We estimate the force parameters using a minimum-variance

unbiased (MVU) filter and a fast Fourier transform (FFT)

for a 100-DoF system. In this example, we implement the

minimum-variance unbiased (MVU) filter to estimate the un-

known dk signal in a 100-DoF system and subsequently use an

FFT to estimate the unknown force parameters: i) amplitude,

and ii) frequency.
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cos(ω0k△t+ φ0) versus its ground truth: a) over 500 s; b) over a small window for clarity. c) Estimated force

parameters based on d̂k’s values.
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Fig. 3. Comparison of estimated and truth displacement values.

Parameter values of the 100-DoF system

are: M = diag([linspace(10, 100, 100)]) kg;

[c1, . . . , c100] = linspace(2.5, 10, 100) Ns/m;

[c̃1, . . . , c̃100] = 100 · linspace(2.5, 10, 100) Ns/m;

[k1, . . . , k100] = linspace(3, 10, 100) × 105 N/m;

[k̃1, . . . , k̃100] = 2 · 107 · linspace(3, 10, 100) N/m. Here,

linspace(x1, x2, N) is a MATLAB function that generates N
points distributed equally between x1 and x2. An external

force with amplitude F0 = 2.5 · 105 N, angular frequency

ω0 = 400 rad/s, and initial phase φ0 = π/6 rad are considered

for the simulation.

In this experiment, we set the sampling time step △t =
0.0039 s with a sensor sampling rate of Fs = 1/△t =
256 Hz, while total experiment time is set at 500 s. Since F0

and ω0 is not part of the state vector, the filter does not need to

assume any prior information about these parameters. For FFT

parameters, we set a number of FFT bins NFFT = 512 sam-

ples, with a total measurement time equal to NFFT /Fs = 2 s,

a 4-term Blackman-Harris window is used as a windowing

function.

Fig. 2a and b show the estimated values of the derivative of

the input force d̂k versus its ground truth dk using the MVU

filter. Fig. 2c shows the estimated force parameters, frequency

w0 and amplitude F0, obtained using an FFT based on d̂k
values. The results demonstrate that this method is able to

estimate the force parameters accurately with total delay in

this case of 2 s or 512 samples.

Fig. 3 shows the comparison between estimated and ground-

truth values of displacement for a few representative masses

in the 100-DoF system over 500 s under the influence of

the external force. As expected, the results confirm that when

applying an external force continuously, displacements occur

across all the masses in the 100-DoF system, over time.

The overall estimated error of input force parameters and

the displacement of the first contact point at mass m1 is

reported in Table. I. The results demonstrate that the MVU

filter can accurately estimate the force-frequency ω0 with the

estimated error of only 0.25 %. Although the absolute error

of the force amplitude F0 is high, its relative error is less than

5 %. Since the MVU filter is an unbiased and optimal filter,

its estimated displacement error is negligible. As discussed

in Remark 1, if the estimation error of w0 is large, then the

estimated value of the input amplitude F0 can be considerably

different compared to its ground truth. However, as observed

in this experiment, the FFT algorithm accurately calculates the

estimated frequency of w0 with a small relative error at 0.25%.
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TABLE I
ESTIMATED ERRORS OF INPUT FORCE PARAMETERS AND THE

DISPLACEMENT OF m1

F0 (N) ω0 (rad)
Displacement

error of m1(m)

Absolute Error 9.1e3 1.02 1.1e-4

Relative Error (%) 3.64 0.25 0.014

As a result, F0 is estimated correctly using our proposed MVU

filter with the derivative approach for input forces.

The processing time for this MVU filter of a 100-DoF

system over the total experiment time of 500 s is 400.50 s;

hence, it is feasible to estimate the unknown input force

parameter values, even for a complex 100-DoF system, in a

real-time manner.

B. Experiment 2 — with direct feed-through formulation

We compare the performance of GDF, AKF, DKF and

EnAKF filters. In this example, we consider the same mass-

spring-damper system and force parameters as in Example

1 with a 100-DoF system; notably, in Example 1, the force

parameters were subsequently estimated using an FFT. As

remarked in [40], GDF does not require any prior information

or assumptions on the unknown input. In contrast, the AKF,

DKF, and EnAKF filters require an initial estimate for its input

mean and covariance at time 0. The number of ensembles used

for EnAKF is q = 500, while the total measurement time used

in the experiments is 5 s.

Fig. 4 a and b show the estimated values of input force f̂k
versus its ground truth fk using GDF, AKF, DKF and EnAKF.

The results show that all four methods can accurately estimate

the unknown input force values without knowing its form, i.e.,

the sinusoidal form in our case.

Fig. 4c shows the estimated force parameter results based

on f̂k values using a 4-term Blackman-Harris window and an

FFT operation to extract the frequency w0 and amplitude F0

of the input force. The results demonstrate that these methods

can estimate the force parameters accurately with a total delay

of, in this case, 2 s or 512 samples (since the four methods

result in the same estimated parameters, only one graph is

plotted here).

Fig. 5 depicts the estimated displacements of different

filtering methods at masses m1, m51 and m100. Further,

Table II shows the estimated errors of input force parameters

and the displacement of m1—the first mass in contact with the

input force. The results show that all of the filtering methods

provide the same estimated results for both amplitude F0 and

frequency w0 of the input force. However, for displacement

estimation, GDF outperforms the other filters, while EnAKF

shows relatively poor performance. The reason is that GDF

is the optimal filter, while the remaining filters are only sub-

optimal. Further, the EnAKF filter is the approximated filter

of the AKF filter. Thus its estimation performance can be

expected to be slightly degraded compared to the AKF filter.

Table. III depicts a comparison of the processing times for

the different filters for various degrees-of-freedom ndof . The

TABLE II
ESTIMATION ERRORS OF INPUT FORCE PARAMETERS AND THE

DISPLACEMENT OF m1

Filters F0(%) ω0(%)
Displacement

error of m1(m)

MVU∗ 3.64 0.25 0.000

DKF 3.89 0.25 0.006

GDF 3.89 0.25 0.000

AKF 3.89 0.25 0.044

EnAKF 3.89 0.25 0.099

TABLE III
COMPARISON OF PROCESSING TIMES FOR DIFFERENT FILTERS VERSUS

THE DEGREES-OF-FREEDOM NUMBER

ndof 10 20 30 50 100

MVU∗ (s) 0.24 0.44 0.66 1.48 5.11

DKF (s) 0.60 1.28 3.31 4.92 20.72

GDF (s) 0.99 2.14 6.24 9.12 39.15

AKF (s) 0.61 1.02 2.51 3.36 15.05

EnAKF (s) 1.42 2.29 4.09 4.88 13.16
∗ Note: The MVU filter assumes the force to be unknown but modelled and
differentiable. According to MVU’s derivation, the covariance error matrix

Pk is updated without calculating the inversion of its predicted value P̂k .
Thus its computational cost is smaller compared to the other filters. Since the
MVU filter is categorised as without direct feed-through while the remaining
filters are with direct feed-through types, its computational time is provided
for completeness and as a baseline for comparing among direct feed-through
filters where a model for the force is not required.

results demonstrate that when the degrees-of-freedom is small,

the AKF filter consistently outperforms other filters in term of

computational time. However, when ndof is large, i.e., ndof ≥
100, the EnAKF filter requires the least computational power

since it does not need to compute the full covariance error

matrix.

Discussion: Although the EnAKF filter does not perform

well in the estimation of the displacements, its performance

in estimating the unknown and unmodelled input forces is

comparable to other filters and is the fastest filter when ndof is

large. On the other hand, the GDF filter is the best performing

filter in terms of estimating the displacement; however, the

GDF filter takes a longer time to compute. Furthermore,

as observed in our numerical experiments and in [3], the

GDF filter often suffers from numerical instability caused by

the failure to evaluate the inversion of the error covariance

matrix P
f
k = (JT

R̃
−1

k J)−1 if the measurement period is

long enough. The reason is that GDF is subject to spurious

low-frequency drifts caused by acceleration’s insensitivity to

any quasi-static components in the input force [26], wherein

dummy displacement measurements can be used to mitigate

the issues [39]. Hence, we can only compare the four filters

within 5 seconds of measurements instead of 500 seconds as

in the case of the MVU filter presented in Sec V-A.

Further, as presented in Table. II and Table. III, the MVU

filter is the best performing filter across all measured metrics.

Hence, if the unknown input force is differentiable and can

be modelled in advance, the MVU filter provides an optimal

method of estimating the input force.
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Fig. 4. Estimated values of f based on GDF, AKF, DKF and EnAKF versus its ground truth: a) over 5 s; b) over a small period for clarity. c) Force parameters

estimated from f̂ values (since four methods result in the same estimated parameters, only one graph is plotted here).
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Fig. 5. Displacement estimations based on GDF, AKF, DKF and EnAKF versus truth values of a set of representative masses.

VI. CONCLUSION

In this paper, we have proposed two novel approaches for

estimating an unknown input force applied to a large structural

system. If the input force has a sinusoidal form, the MVU filter

coupled with a force extraction technique from estimated force

derivative can be implemented to estimate the unknown force

in real-time environments for the large structural system. When

the input force is completely unknown, our proposed EnAKF

filter can significantly reduce computational time compared to

other state-of-the-art methods without degrading the estimation

performance.
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