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Abstract

We investigate the problem of tracking and
planning for a UAV in a task to locate multi-
ple radio-tagged wildlife in a three-dimensional
(3D) setting in the context of our Tracker-
Bots research project. In particular, we in-
vestigate the implementation of a 3D tracking
and planning problem formulation with a fo-
cus on wildlife habitats in hilly terrains. We
use the simplicity of Received Signal Strength
Indicator (RSSI) measurements of VHF (Very
High Frequency) radio tags, commonly used to
tag and track animals for both wildlife con-
servation and management in our approach.
We demonstrate and evaluate our planning for
tracking multiple mobile radio tags under real-
world digital terrain models and radio signal
measurement models in a simulated software-
in-the-loop environment of a Quad-Copter.

1 Introduction
Civilian Aerial Robots or so-called Unmanned Aerial
Vehicles (UAVs) have rapidly evolved to enable Au-
tonomous systems on UAVs are expected to make them
more flexible and scalable [Chung et al., 2018]. Achiev-
ing autonomy in the wild and in a 3D space is challenging
[Robin and Lacroix, 2016].

In this paper, we focus on investigating tracking
Very High Frequency (VHF) radio-tagged targets in un-
known terrain environments using an autonomous UAV.
Radio-tagged tracking is an established field over 50
years [Cochran and Lord Jr, 1963; Kenward, 2000]. Ac-
cording to [Kays et al., 2011; Tremblay et al., 2017;
Webber et al., 2017], radio-tagged tracking methods are
still the most important and low-cost technique to study
individual wildlife species or different size over long pe-
riods. Recently, we have seen developments in tracking
wildlife using vision-based sensors [Selby et al., 2011;
Olivares-Mendez et al., 2015] or infrared-based sensors

Figure 1: TrackerBot: Our autonomous UAV plat-
form prototype under development. Currently capable
of autonomous tracking and localization tasks in mostly
flat terrains using a 2D implementation of tracking and
planning.

[Gonzalez et al., 2016; Ward et al., 2016]. However, ra-
dio tagging avoids the data association problems [Bar-
Shalom, 1987; Stone et al., 2013] and other vision-related
issues such as target occlusions [Gonzalez et al., 2016]
can make monitoring wildlife in the wild difficult.

Initial proposals to use commercial UAVs to track
radio-tagged targets can be traced back to [Posch and
Sukkarieh, 2009; Körner et al., 2010] or more recently
in [Dos Santos et al., 2014; Jensen et al., 2014; Cliff
et al., 2015; VonEhr et al., 2016; Bayram et al., 2017;
Nguyen et al., 2017; Nguyen et al., 2018]. All of these
methods assumed that the terrains are flat and im-
plemented tracking and planning algorithms to localize
radio-tagged targets in two dimensions (latitudes and
longitudes only) on the ground plane. The elevations
(the ground surfaces) have been ignored in the previ-
ous work. In this paper, we investigate our tracking
and planning formulation in [Nguyen et al., 2017] in
three-dimensions to account for the unknown terrains,
especially in hilly areas. Although [Nguyen et al., 2017]
has demonstrated an aerial robot system, for the first
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time, capable of planning trajectories to track and local-
ize multiple mobile VHF wildlife radio tag targets, the
validation of the method in a 3D environment remains.
In this paper, we use received signal strength indica-
tor (RSSI) measurements, which exploits the simplicity
of antenna and receiver designs to build a lightweight
payload system, to validate our approach in a 3D en-
vironment. We take the first step towards autonomous
tracking and localizing under unknown terrains in 3D
environments using a UAV with RSSI-based measure-
ments.

In summary, our main contributions are:
• We implement a 3D tracking and planning formu-

lation using RSSI-based methods in software in the
loop simulation of a Quad-Copter.
• We simulate tracking and localizing multiple mobile

radio-tagged targets in hills or valleys where the ter-
rain information is unknown.
• We compare our 3D tracking method to tracking

and localize radio-tags in the unknown terrains with
one where the terrain information is known.
• Our investigations are based on the real-world

Digital Elevation Model (DEM) data published
by [Australia-Geoscience, 2018] for the simulated
software-in-the-loop (SITL) Quad-Copter.

2 Background
In this paper, we study the problem of tracking and lo-
calizing multiple radio-tagged targets using a UAV au-
tonomously. Given that we do not have to address a data
association problem, the tracking problem can be formu-
lated by running multiple Particle Filters simultaneously,
while the control algorithm is calculated using the Par-
tially Observable Markov Decision Process (POMDP)
framework. Our formulation is based on [Nguyen et al.,
2017], where a system was only implemented in a 2D
environment. In the following sections, we provide an
overview of our problem and the background of Particle
Filters and POMDP before providing a formulation for
the 3D problem.

2.1 Problem Statement
We consider the problem of tracking and localizing multi-
ple mobile radio-tagged targets in the hilly terrains using
a UAV. The proposed platform is discussed in [Nguyen
et al., 2017], with the following elements, as shown in
Fig. 1:
• A civilian, commercial and low-cost UAV with an

accurate Global Positioning System (GPS) mea-
surements in latitude and longitude, but using an
unreliable barometer sensor in altitude measure-
ments. The UAV maneuverability is determined by
that of a Quad-Copter.

• A sensor system—the main payload—includes a
directional VHF antenna to receive the transmit-
ted signals, an embedded computer module con-
nected to a software-defined radio device to detect
and measure the received signal strength indicator
(RSSI) through VHF antenna.

Further, we assume that each radio-tag transmits an
on-off-keying signal with known transmission power P0

in every T0 seconds. The target is located in a hilly
area where its altitude can vary in [zmin, zmax] m. We
did not consider the exploration problems in this work
where the reward functions can be formulated in both
exploration and localization parameters [Charrow et al.,
2015]. Instead, we assume that the UAV can detect all
of the targets, which is reasonable in a moderate size
search area; we concentrate on improving the tracking
performance for detected targets.

2.2 Particle Filters
The Particle filters belong to a class of approximation
methods to nonlinear systems in the Bayesian filter fam-
ily. The basic method of the particle filters is to use a
random sampling process (Monte Carlo) to approximate
the probability distributions of interest [Vo et al., 2015].

Formally, suppose xk is the state of a target at time
k, which generates an observation zk based on the ob-
servation model:

zk = gk(xk,wk), (1)

where wk denotes the observation noise. In general, the
observation can be characterized as a likelihood function
gk(zk|xk), which is the probability of observing the mea-
surement zk given the state xk. Further, the target state
xk evolves over time based on the transition model:

xk = fk|k−1(xk−1,vk−1), (2)

where vk−1 denotes the process noise. Generally, the
target state can also be characterized by the transition
kernel fk|k−1(xk|xk−1), which is the probability of tran-
sitioning to the target state xk, given its previous state
xk−1.

The objective of the filtering problem is to estimate
the belief density πk(xk|z1:k) based on the history of ob-
servation data z1:k from time 1 to time k. Using the
Bayes recursion roles, from the initial density π0,the be-
lief density can be calculated sequentially using the pre-
diction and update steps as followed:

πk|k−1(xk|z1:k−1) =
∫
fk|k−1(xk|x)πk−1(x|z1:k−1)dx,

πk(xk|z1:k) =
gk(zk|xk)πk|k−1(xk|z1:k−1)∫
gk(zk|x)πk|k−1(x|z1:k−1)

dx.

(3)
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The Particle Filters implements the random sampling
process called Monte Carlo (MC) method [Gordon et al.,
1993] to approximate the belief density by a weighted
set of independently and identically distributed (i.i.d)
particles {(wik, x̃ik)}Ni=1,i.e.:

πk(xk|z1:k) ≈
N∑
i=1

wikδ(xk − x̃ik), (4)

where δ(·) denotes the Kronecker delta, and
N∑
i=1

wik = 1.

2.3 POMDP
We propose to formulate the UAV path planning prob-
lem under the Partially Observable Markov Decision
Process (POMDP) framework. The POMDP frame-
work has demonstrated its effectiveness in controlling the
robots to achieve predefined tasks based on reward func-
tions in uncertain observations [Kaelbling et al., 1998;
Hsu et al., 2008; Ragi and Chong, 2013; Baek et al., 2013;
Gostar et al., 2016].

A POMDP can be described by the 6-tuple
〈S,A, T ,R,O,Z〉, where S denotes set of states, in-
cluding the target state x and the UAV state u, i.e.,
s = {x,u} ∈ S; A denotes the set of UAV con-
trol actions; T denotes the state transition kernel,i.e.,
T (s,a, s′) = π(s′|s,a), which is the probability of tran-
sitioning to the state s′ from the state s if the action a is
taken; R(a denotes the reward function if the action a is
applied; O denotes a set of observations o, and Z denotes
the observation likelihood, i.e., Z(o, s,a) = π(o|s,a),
which is the probability of an observation o given the
state s and the taken action a.

The purpose of the UAV path planning is to find the
optimal control action

∗
a that maximizes the reward func-

tion over a look-ahead horizonH [Beard et al., 2017],i.e.,

∗
a = argmax

a∈Ak

E
[
Rk+H(a)

]
, (5)

where γ ∈ (0, 1] denotes the discount factor, which mod-
ulates the effects of future rewards over the current re-
wards, and E denotes the expectation operator.

The reward function can be calculated using task-
based or information-based methods [Beard et al.,
2017]. When the uncertainty is high, the information-
based methods are preferable since it helps to re-
duce uncertainty by increasing the information gain.
For information-based methods, there are several ap-
proaches to measure the information divergence, includ-
ing Kullback-Leibler (KL) divergence [Hero et al., 2008],
Rényi divergence [Ristic and Vo, 2010; Ristic, 2013] or
Shannon entropy [Cliff et al., 2015; Charrow et al., 2015].
According to [Cliff et al., 2015], the information gain
measures the change in Shannon entropy between the

prior belief density π1 = πk+H(·|z1:k) and the posterior
belief density π2 = πk+H(·|z1+k, zk+1:k+H(a)), i.e.,

Rk+H(a) = H(π1)−H(π2), (6)

where H(π(x)) = −
∫
π(x) log π(x)dx is the Shannon

entropy.

3 Problem Formulation
In this work, we focus on formulating the problem of
tracking and localizing radio-tagged targets in unknown
terrains and follow our previous work in [Nguyen et al.,
2017]. The state of a single target is x = [x, l] ∈ R3 ×L,
where x = [p

(x)
x , p

(x)
y , p

(x)
z ] ∈ R3 is the target 3D position

in x, y and z axes of the Cartesian coordinate system;
l ∈ L ⊂ N is the unique natural number represents the
frequency of the target transmitted signal, which is used
as the target unique ID. The state of a UAV is u =

[u, θ(u)] ∈ R3 × [0, 2π), where u = [p
(u)
x , p

(u)
y , p

(u)
z ] ∈ R3

is the UAV position in 3D coordinate; θ(u) is the UAV
heading. Further, we assume that the number of targets
|L| in the search area is known, and the search operation
terminates when all of the searching targets are tracked
and localized.

3.1 Multi-target tracking
We propose using a particle filter to implement as our
tracking algorithm to account for the nonlinear sys-
tem dynamics and noisy measurement data from signal
strength measurements interfered by radio-wave scat-
tering and attenuation or thermal noise of the re-
ceiver [Nguyen et al., 2017]. Since each target is uniquely
identified by its frequency index l, the RSSI-based mea-
surements provide a known data association. Further,
we assume that there is no false-alarm or misdetection
for our RSSI-based measurements as in [Cliff et al., 2015;
Nguyen et al., 2018; Nguyen et al., 2017]. Therefore, we
can track and localize multiple radio-tagged targets by
running multiple particle filters simultaneously, one par-
ticle filer for each target, as proposed in [Charrow et al.,
2015; Nguyen et al., 2017]. The particle filter requires
correctly modeling for both target transition and obser-
vation models to achieve good performance.

Target transition model: For wildlife targets, their
dynamic behaviors are usually unpredictable. Thus we
model their behaviors as a random walk model, i.e.,

fk|k−1(xk|xk−1) = N (xk;xk−1, Q
(x))δ(lk − lk−1) (7)

where N (·;µ,Q) denotes a Gaussian density with mean
µ and covariance Q; Q(x) = [σ2

x, σ
2
y, σ

2
z ]I3 is the 3 × 3

covariance matrix of the process noise, and In denotes
the n× n identity matrix.
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Observation model: We consider the LogPath mea-
surement model experimentally validated with VHF fre-
quencies in [Nguyen et al., 2017]. Here, the received
power h(xk,uk) [dBm] at the UAV with state uk trans-
mitted from target with state xk comprises only the LOS
component,i.e.,

h(xk,uk) = P0 − 10n log(d(xk,uk)) +Gr(xk,uk). (8)

Here, P0 is the reference power [dBm]; n is the unit-
less path loss constant, which characterizes how signal
attenuates over the distance with a typical range from
2 to 4; d(xk,uk) = ||xk − uk|| is the distance between
the target and the UAV; Gr(xk,uk) is the directional
antenna gain, which depends on the UAV heading θ(uk)

and its relative position to the target xk.
The measured power or the received signal strength

indicator (RSSI) zk [dBm] is corrupted with noise, e.g.,
thermal noise or signal interference from other sources.
We assume the noise is white. Thus, the measurement
likelihood model is

gk(zk|xk) = N (zk;h(xk,uk), Q
(z)), (9)

where Q(z) is the 1 × 1 covariance matrix of the mea-
surement noise.

3.2 Path Planning using the Shannon
entropy information gain

In this section, we present our approach to calculating an
optimal control action for the UAV. At time k, the UAV
needs to plan how it will navigate over the time interval
τ = k+ 1 : k+H with the look-ahead horizon H. Since
there are multiple targets in the search area, we select
the target with the strongest RSSI-based measurement
as the one to be tracked and localized first [Nguyen et
al., 2017]. Formally, suppose Zk(Xk) =

⋃
l∈L zk(xk) be

a set of measurements at time k generated from the re-
spective set of targets Xk =

⋃
l∈L xk, and Fk be of the

set of localized targets (a target is considered localized
if its estimation uncertainty is smaller than a predefined
bound), the selected target

∗
x for the path planning at

time k is
∗
x = argmax

x∈Xk\Fk

Zk(Xk). (10)

Let Ak be a discrete set of control actions for the UAV
at time k. We define Ak contains |Ak| number of ac-
tions, that control the UAV to change its heading to one
of the following {0, 2π/|Ak|, . . . , 2π(1− 1/|Ak|)} angles,
then moves forward according to the selected angle until
another control action applies. For each control action
a ∈ Ak applies to the UAV, it generates a discrete se-
quence of the UAV poses uτ (a) = [uk+1, . . . ,uk+H ] with
corresponding measurements zτ (a) = [zk+1, . . . , zk+H ].

The goal in path planning is to find an optimal control
action a∗ ∈ Ak that maximizes the expected reward, i.e.,

∗
a = argmax

a∈Ak

E
[
Rk+H(a)

]
. (11)

Since the expected reward requires an integration, which
does have an analytic formula, we implement the Monte
Carlo integration [Ristic and Vo, 2010; Beard et al., 2017;
Nguyen et al., 2017] by drawing multiple sampled mea-
surements z(m)

τ (a) for m = 1, . . . ,M , then calculate the
sampled reward R(m)

k+H(a). Thus, the expected reward
can be approximated by the mean of all the sampled
rewards, i.e.,

E
[
Rk+H(a)

]
≈ 1

M

M∑
m=1

R(m)
k+H(a). (12)

In this work, we implement the change in Shannon
entropy as the reward function1 as in [Cliff et al., 2015;
Charrow et al., 2015]:

R(m)
k+H(a) = H(πk+H(

∗
x|z1:k))−H(πk+H(

∗
x|z1:k), z(m)

τ (a))

(13)

For notational simplicity, let π1 , πk+H(
∗
x|z1:k) and

π2 , πk+H(
∗
x|z1:k, z(m)

τ (a)). Since we use the particle
filter as our tracking filter, each density can be approxi-
mated by the same set of particles with different weights:

π1 = {(wi1, x̃i)}Ni=1;π1 = {(wi2, x̃i)}Ni=1. (14)

Thus, the reward function in (13) can be approximated
as followed:

R(m)
k+H(a) ≈

N∑
i=1

[
wi2 log(w

i
2)− wi1 log(wi1)

]
. (15)

4 Software In The Loop Experiments
In this section, we validate and demonstrate our ap-
proach by tracking and localizing multiple radio-tagged
targets in two different unknown terrains. Further,
we compare our 3D tracking algorithm with a tracking
method where the terrain information is already known.
The terrain information is based on the real-world DEM
data published by [Australia-Geoscience, 2018] with 5
m in latitude and longitude resolutions, and ±0.3 m in
altitude errors.

1Notably, multiple other information gain measures can be
employed. In [Nguyen et al., 2017], we investigated several
reward functions. We selected Shannon entropy here due to
its simplicity and because our goal is to take the first steps to
demonstrate that RSSI based measurements from an aerial
robot can be used to realize tracking in realistic 3D settings.
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Figure 2: Block diagram of our proposed SITL settings
for emulated experiments. The Tracking and Planning
System communicates with the DroneKit SITL simula-
tor through the MAVLink protocol.

4.1 Simulation Experimental Setup
We evaluate our algorithm using the real-time emulated
SITL environments, as shown in Fig.2. The tracking
and planning algorithm is written in MATLAB, which
sends control actions in way-points through the Teleme-
try Host Tool and the Input/output proxy—IO proxy,
both are written in Rust-lang, to the DroneKit-SITL
simulator [Ryan et al., 2015] using the MAVLink proto-
col. For the DroneKit-SITL, we use the copter-3.3 li-
brary to emulate a quad-copter. Further, the QGround-
Control (a popular and cross-platform ground station
control software) can also communicate to the DroneKit-
SITL simulator to facilitate and control the emulated
copter in arming, taking off, and changing its altitude to
a defined altitude above ground level (AGL). The tools
and software developed for the TrackerBot project will
be publicly available at our project repository2

We conduct several software-in-the-loop (SITL) tri-
als under two different terrain settings: i) South Aus-
tralia (SA) - Lower Glenelg National Park; ii) New South
Wales (NSW) - Dorrigo National Park as shown in Fig.3
to verify and demonstrate the capability of planning to
track multiple mobile targets with RSSI based measure-
ments from an aerial robot.

Algorithm Evaluations: To evaluate our proposed
algorithm, we measure the Root Mean Square (RMS)
error—the average error distance between the targets’
estimated locations versus its ground truths—RMS =∑
l∈L ||xtruth−xest||/|L| [m], and the flight time [s]—the

2The TrackerBots project repository https://github.
com/AdelaideAuto-IDLab/TrackerBots

Figure 3: The terrain information for two site settings:
a) Lower Glenelg National Park terrain, South Aus-
tralia (SA); b) Dorrigo National Park terrain, New South
Wales (NSW).

time a UAV takes to localize all of the targets, including
planning time. As in our previous work [Nguyen et al.,
2018; Nguyen et al., 2017], a target is considered tracked
and localized if its estimation uncertainty is smaller than
the predefined bound: 15m for the x-axis and y-axis, and
25m for the z-axis. The reason z-axis has a higher bound
that the directional antenna does not provide an accu-
rate antenna gain in z-axis causing higher uncertainty
in the estimation (see the antenna pattern modeled and
evaluated in [Nguyen et al., 2017] where the measure-
ments validated the pattern in the xy plane due to the
difficulty of accurately controlling the UAV position to
measure the field pattern in the xz plane).

Scenario 1: The first scenario considers tracking and
localizing three mobile radio-tagged wildlife in Lower
Glenelg National Park, South Australia. We selected
a search area of 1000 m × 1000 m (100 hectares)
where the elevation changes from 16 m to 36 m
based on the real-world Digital Elevation Model (DEM)
from [Australia-Geoscience, 2018], as shown in Fig.
3a. Its initial position in latitude, longitude, eleva-

https://github.com/AdelaideAuto-IDLab/TrackerBots
https://github.com/AdelaideAuto-IDLab/TrackerBots
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Figure 4: The tracking and localization results without terrain awareness to track and localize three radio-tagged
targets in the Lower Glenelg National Park - SA: a) the ground truth vs. the estimated positions in three dimen-
sions (North-East-Elevation); b) the UAV trajectory using the Shannon entropy and its estimated locations in two
dimensions (North-East); c) the screen-shot of the QGroundControl with the UAV trajectory.

Figure 5: The tracking and localization results with terrain awareness to track and localize three radio-tagged
targets in the Lower Glenelg National Park, SA: a) the ground truth vs. the estimated positions in three dimensions
(North-East-Elevation); b) the UAV trajectory using the Shannon entropy-based reward function and the estimated
locations of the radio tags in two dimensions (North-East); c) A screen capture of software in the loop simulation
with QGroundControl showing the UAV trajectory. Here the straight-line path shows the UAV returning to its home
location after the tracking task is complete.

tion is [−38.0300, 141.1783, 17.7]T , which is converted to
[0, 0, 17.7]T m in the xyz-axes.

For generating the ground truth, the initial posi-
tions of three mobile targets are [320, 361, 21.5]T m,
[826, 640, 26.7]T m, and [166, 796, 30.3]T m. Targets are
assumed to follow the random walk model with standard
deviations in x-axis and y-axis as σ(x)

x = σ
(x)
y = 1 (m/s),

while its elevation in z-axis is derived from the DEM
data based on its x and y positions.

For tracking and planning algorithm without terrain
awareness, the target location is unknown, and its initial
distribution is sampled from a uniform distribution over
the predefined ranges with the number of particles N =
40, 000, i.e.,

π0(x0) = U [0, 1000]× U [0, 1000]× U [12.7, 37.7],

where U [a, b] denotes the uniform distribution on the in-
terval [a, b] (m). The covariance matrix of the process
noise is Q(x) = [1, 1, 0.1]T I3 (m/s)2. We set the mea-
surement duration T0 = 1 s, the measurement noise

Q(z) = 52 (dBm)2, the reference power P0 = −35.4
dBm, the path loss constant n = 2, and the look-a-
head horizon time step H = 10. The UAV is armed,
taken off, and its altitude is set to 80 m AGL using
QGroundControl, i.e., its initial state is set at u0 =
[10 m, 10 m, 97.7 m, π/4 rad]T and its maximum ground
speed at 10 m/s. We consider the number of control ac-
tions is |A| = 30, i.e., the allowable heading changes are
{0, π/15, . . . , 29π/15} (rad).

For tracking and planning algorithm with the terrain
awareness, since the elevation data (z-axis) are already
available, we only need to estimate the target position
in two dimensions of the xy-axes, then deriving the ele-
vation in z-axis from the DEM data based on its x and
y estimated positions. For parameter settings, we im-
plement the same settings as in the case without ter-
rain awareness, except the particles of the initial distri-
bution is only sampled from U [0, 1000] × U [0, 1000] for
xy-axes, while z-axis particles are calculated from DEM
data based on the particles of the xy-axes. Further, given



Preprint: Australasian Conference on Robotics and Automation 2018 — Canterbury, New Zealand

Figure 6: The tracking and localization results without terrain awareness to track and localize three mobile radio-
tagged targets in the Dorrigo National Park, NSW: a) the ground truth vs. the estimated positions in three dimensions
(North-East-Elevation); b) the UAV trajectory using the Shannon entropy-based reward function and the estimated
locations of the radio tags in two dimensions (North-East); c) the screen capture of the software in the loop simulation
with QGroundControl showing the UAV trajectory. Here, the straight-line trajectory shows the UAV returning home
after completing the tracking task.

Figure 7: The tracking and localization results with terrain awareness to track and localize three radio-tagged targets
in the Dorrigo National Park, NSW: a) the ground truth vs. the estimated positions in three dimensions (North-
East-Elevation); b) the UAV trajectory using the Shannon entropy and its estimated locations in two dimensions
(North-East); c) the screen capture of the software in the loop simulation with QGroundControl showing the UAV
trajectory. Again, the straight-line path shows the UAV returning to its home location after completing the task.

Table 1: Tracking and localizing performance over 10
Monte-Carlo runs for tracking radio-tagged targets in
the Lower Glenelg National Park, SA

Terrain
Aware

Error (m) RMS
(m)

Flight
Time (s)x-axis y-axis z-axis

No 12.6 13.4 4.2 20.78 414.4
Yes 14.4 13.5 0.3 21.53 379.1

known terrain information, the covariance matrix of pro-
cess noise is Q(x) = [1, 1, 0]T I3 (m/s)2.

Fig. 4 and Fig. 5 depict the tracking and localiza-
tion results with terrain awareness and without terrain
awareness algorithms, respectively. Table 1 provides de-
tailed comparisons between these two approaches over
10 Monte-Carlo trials in SITL emulated environments.
We can see that the tracking error in terms of RMS is
similar for both algorithms with or without terrain data.

It is expected that the algorithm using terrain infor-

mation has a smaller z-axis error, which is due to the
errors in estimating positions in xy-axes. Further, we
notice that the flight time for terrain awareness is sig-
nificantly shorter because it only needs to estimates two
unknown variables compared to the algorithm without
terrain awareness. Thus, when the terrain information
is readily available, we should implement the tracking al-
gorithm with terrain awareness to improve flight times.
However, most areas in Australia still do not have a Digi-
tal Elevation Model, thus implementing our algorithm—
tracking without terrain awareness—-can play an im-
portant role in tracking wildlife targets in unknown ter-
rains. Notably, flight times of approximately 400 seconds
for environments without terrain information are eas-
ily achievable with modern small size battery-powered
UAVs.

Scenario 2: The second scenario considers the
problem of tracking and localizing three mobile radio-
tagged targets in Dorrigo National Park, NSW. This
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terrain is more challenging than Scenario 1 since the
Dorrigo National Park site has larger elevation vari-
ations ranging from 51.7 m to 318.7 m. Its ini-
tial positions in latitude, longitude, and elevation
are [−30.3730, 152.8622, 119.1]T , which is converted to
[0, 0, 119.1]T m in the xyz-axes.

For parameters, we apply the same settings as in Sce-
nario 1 for the algorithm with terrain awareness. For the
algorithm without terrain awareness, all settings are kept
as the same as in Scenario 1, except for the elevation set-
tings. The initial particles for the elevation are sampled
from U [49.1, 319.1] m. Since the variation in the eleva-
tion in this site is higher, we set the covariance matrix
of the process noise as Q(x) = [1, 1, 1]T (m/s)2. Further,
the UAV is armed, taken off, and changed to an altitude
of 400 m AGL3 using the QGroundControl, i.e., its ini-
tial state is set at u0 = [10 m, 10 m, 519.1 m, π/4 rad]T .

Fig. 6 and Fig. 7 present the tracking and localiza-
tion results with terrain awareness and without terrain
awareness algorithms, respectively, for tracking radio-
tagged wildlife at Dorrigo National Park, NSW. Here,
the elevations change significantly. We can see that our
algorithm can still perform well and accurately localize
three mobile radio-tagged targets in this challenging sur-
vey area. In this particular mission, the RMS and flight
time are (31.8 m, 705.1 s) and (28.2 m, 603.3 s) for algo-
rithms without terrain awareness and with terrain aware-
ness, respectively. Although the RMS values are higher
compared with those in Table 1 due to the challenging
environment, the results demonstrate the robustness of
our proposed algorithm. Our RSSI based measurements
based planning for tracking can localize the mobile radio-
tagged targets under very challenging terrain variations.
Notably, the flight times are longer than with Scenario 1 ;
however, flight times of approximately 700 seconds are
still achievable with modern battery-powered medium
size UAVs in the 2 kg to 4 kg range. For instance, our
TrackerBot demonstrated in [Nguyen et al., 2018] has a
flight time of approximately 6-10 minutes whilst carrying
a sensor system payload of mass 260 g.

5 Conclusions and Future work
We have validated our approach for planning to track
multiple mobile VHF radio-tagged targets in realistic 3D
environments using a measurement model validated in
field experiments using the software in the loop simula-
tions. Therefore, we have taken the first steps towards
three-dimensional tracking and planning for a UAV using

3We understand that it is legally not possible to fly a UAV
at an altitude higher than 120 m AGL [Civil Aviation Safety
Authority, 2017]. However, as a proof of concept and in an
emulated environment, we set the relative altitude to 400
m AGL to remove the obstacle avoidance problem from our
formulation. We leave this for future work.

an RSSI-based method with or without terrain aware-
ness.

The results confirm the validity of our formulation and
software in the loop simulations confirm that we can ex-
pect the system to be successful with a Quad-Copter
UAV in field experiments. However, we also observe in
our results in Table.1, when terrain information is widely
available, we can rely on this information to reduce flight
times. Although our study has validated our approach in
a 3D environment, there are a number of tasks that for-
mulate our future work in TrackerBots to demonstrate
our approach in field experiments. We briefly outline
these below.

• We implemented Shannon entropy used in [Cliff et
al., 2015; Charrow et al., 2015]. However, we recog-
nize that other information-theoretic reward func-
tions such as Rényi divergence can improve plan-
ning decisions. Better control decisions can lead to
shorter flight times and conservation of battery life.
Therefore, other information gain measures should
be formulated and evaluated with Shannon entropy.

• We have considered a measurement model that does
not consider multi-path propagation effects possi-
ble from ground reflections and potential scattering
losses of signal strength information from, for exam-
ple, tree canopies. Therefore, future research should
consider a more complex measurement model to un-
derstand the potential performance improvements
such a model can provide in more complex signal
propagation environments.

• Although we have conducted several experiments in
realistic environments, the next step is to validate
our method in field experiments.

• We recognize that Pixhawk firmware has the capa-
bility to follow terrain maps. We should also eval-
uate tracking and planning under terrain-following
when the terrain information is available.

• Recent research in the field suggests that wildlife
may be disturbed and flee at the sounds of a
UAV [Hodgson and Koh, 2016; Mulero-Pázmány et
al., 2017]. This can make the tacking task more
complicated. Therefore, future planning formu-
lations should consider planning with situational
awareness of VHF radio tags to avoid approaching
the targets.

• We have not considered the detection problems,
such as false-alarms and misdetections. Future
planning for tracking formulations should consider
detection problems as well as the formulation of a
potential track-before-detect method based on mea-
surements from the SDR based receiver architecture
of a TrackerBot [Nguyen et al., 2018].
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