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Abstract—Multistatic Doppler radar measurements for multi-
ple targets are typically corrupted by noise, missed detections
and false alarms. In addition, when targets are close together, it
becomes more difficult for the tracker to resolve tracks due to the
highly nonlinear and low observability nature of the observation.
This paper proposes a solution to the problem of tracking
multiple marine ships from multistatic Doppler measurements.
We use close form labeled multitarget Bayes filter, which can
accommodate unknown and time-varying number of targets,
clutter misdetection and association uncertainty. The efficiency
of the proposed algorithm is illustrated via numerical simulation
examples.

Index Terms—Random Finite Set, Multitarget Tracking, Mul-
tistatic Doppler measurement.

I. INTRODUCTION

In both civilian applications and modern electronic warfare,
radar-based surveillance plays a key role in detecting and
tracking targets for not only prevention but also interception
strategies. Doppler radar is a type of passive radar, which
has several advantages in this domain, such as light weight,
compact design, low power consumption, and not easily be
detected. Multistatic Doppler radar system, which contains
multiple spatially distributed static radars, have been used for
tracking multiple targets with higher accuracy [1], [2].

In practice there are several challenges in the use of mul-
tistatic Doppler radars. Firstly, there are generic challenges
in multitarget tracking such as unknown and randomly time-
varying number of targets, detection uncertainty, clutter and
data association uncertainty [3]. Secondly, multistatic Doppler
radar involves multiple sensors, nonlinearity and low observ-
ability of the Doppler measurement [1], [2], which compounds
the difficulty in data association.

Three main approaches have been developed to address
the multitarget tracking problem, namely: the Joint Proba-
bilistic Data Association Filter (JPDAF); Multiple Hypothesis
Tracking (MHT); and Random Finite Set (RFS) [3]. While
JPDAF and MHT involve modifying single target tracking
filters to deal with multiple targets, the RFS approach provides
a top-down formulation based on fundamental concepts in
estimation theory, including multitarget estimation error [4]
and Bayes optimality [5], [6].

This paper is conducted under the support of Curtin International Post-
graduate Research Scholarship - Ministry of Education and Training Vietnam
(CIPRS-MOET).

The RFS approach has gained world-wide interest in recent
years, and is recognised as the future method of choice
in multitarget tracking [7]. Since its inception, a suite of
multitarget filters have been developed, e.g. the Probability
Hypothesis Density (PHD) filter [8], [9], Cardinalized PHD
filter [10], [11], multi-Bernoulli filters [4], [12], Generalized
Labeled Multi-Bernoulli (GLMB) or Vo-Vo filter [13], [14]1,
Labeled Multi-Bernoulli filter [15], and multi-scan GLMB
filter [16].

RFS techniques have been successfully deployed in many
applications from tracking and data fusion [6], to machine
learning [17]. RFS-based filters such PHD/CPHD and multi-
Bernoulli have been applied to computer vision [18]–[20],
robotics [21] automotive safety [22], sensor scheduling [23]–
[28], and sensor network [29], [52], [53]. The Vo-Vo filter
outputs target tracks and can be implemented with linear com-
plexity in the number of measurements using Gibbs sampling
[30]. Furthermore, it has been applied to tracking from merged
measurements [31], extended targets [32], maneuvering targets
[33], track-before-detect [34]–[36], computer vision [37], [38],
sensor scheduling [39], [40], distributed fusion [41], [42], field
robotics [43], and cell microscopy [44].

Although many RFS-based filters such as the PHD and
multi-Bernoulli filters have been applied to Doppler measure-
ments [45], [46], they do not produce target tracks and are
crude approximations to the Bayes multitarget filter. Being
one of the most efficient multitarget tracker, demonstrated to
track over a million targets per scan [47], the Vo-Vo filter is
therefore, most suitable to address the challenges of tracking
multiple marine vessels in a timely manner.

Apart from the introduction, the paper comprises the fol-
lowing four sections. First, the background of target dynamic
model with multistatic Doppler measurement, and the labeled
RFS approach to multitarget tracking is presented. Second, the
Vo-Vo filter applied to the tracking of marine ships with mul-
tistatic Doppler measurements is shown. Third, validation of
the proposed solution is illustrated by numerical simulations,
followed by some concluding remarks.

II. BACKGROUND

A. Target dynamic model
We consider a nonlinear multitarget sceriano with several

marine ships whose kinematic state includes latitude-longitude

1For short we use the term Vo-Vo filter coined by Mahler in [6].
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position pk = [µk, λk]T , speed νk = [µ̇k, λ̇k]T and the
course ψ, i.e. x̃k = [xTk , ψ]T where xk = [µk, µ̇k, λk, λ̇k]T .
Note that, latitude, longitude and course are measured in
degree (°), while distance, velocity and time are calculated
in nautical mile (M), knot (kn), and hours (h), respectively.
Each target is modeled by a Gaussian Markov transition
density fk|k−1(xk|xk−1) = N (xk; x̂k,Rk), where x̂k =
[[F(ψk)xk−1]T , ψk]T ,Rk = diag([σ2

vGkG
T
k , σψ]),

F(ψ) =


1 sin(∆ψ)

ψ
0 (cos(∆ψ)−1)

ψ

0 cos(∆ψ) 0 − sin(∆ψ)

0 − (cos(∆ψ)−1)
ψ

1 sin(∆ψ)
ψ

0 sin(∆ψ) 0 cos(∆ψ)

 ; Gk =


∆2

2
0

∆ 0

0 ∆2

2
0 ∆

 ,
(1)

∆ is the sampling period, σv is the standard deviation of the
process noise, σψ is the standard deviation of the course noise.

Remark 1: The target model with transition matrix F(ψ)
given in (1) is based on the assumption that the surveillance
area is not located near the North/South Poles.

B. Measurement model

In this work, we consider a multistatic passive Doppler
radar system consisting of one cooperative transmitter and
two spatially distributed receivers (see Fig.1). This system
measures the speed of the target at a distance by bouncing
pulses of radio signals off the target, collecting the signals
reflected from the target then analyzing the altered frequency
of returned signals based on the Doppler effect [48]. The
Doppler measurement of a target with state xk at the sth
receiver is given by

z
(s)
k = −νTk

 pk − p(s)
r∥∥∥pk − p(s)
r

∥∥∥ +
pk − pt
‖pk − pt‖

 ft
c

+ wk. (2)

in which the position pk and speed νk have been defined in the
previous part, pt = [µt, λt]

T is the transmitter location, and
p

(s)
r = [µ

(s)
r , λ

(s)
r ]T is the sth-receiver position; wk is zero-

mean Gaussian noise with covariance Q, wk ∼ N (0,Qk);
and ft and c are the emitted signal frequency of the transmiter
and the speed of light, respectively.

Fig. 1: Multitarget tracking by using Doppler radar sceriano.

Remark 2: Since the target can move towards or aways from
the receiver/transmitter, the observation equation (2) based on
Doppler effect can be negative or positive in the known interval

[−f0,+f0] of the Doppler sensor. It is obvious that both state
and measurement equations are highly nonlinear.

C. Multitarget State and Labeled RFS Models

In a multitarget system, both the states and the number
of the targets randomly vary with time. The objective of
multitarget tracking is to jointly estimate not only the number
of targets and their states but also the trajectories of the targets
via information collected from sensors.

For simplicity, the following notations will be used through-
out the paper. An unlabeled single target state is denoted
by lower-case leters (i.e. x, y, z, etc.), and an unlabeled
multitarget state (a finite set of single states) is represented
by upper-case leters (X , Y , Z,etc.) while the labeled states
are denoted by bold-faced letters (x,X, etc.). The spaces these
corresponding variables are denoted by blackboard bold letters
(X,L,Z, etc). Let 1S(·) denotes the inclusion function of a
given set S, 1S(X) = 1 if X ⊆ S and zero otherwise, the
F(S) represents the class of finite subsets of S. In addition,
let 〈f, g〉 =

∫
f(x)g(x)dx denotes the inner product, fX =∏

x∈X f(x) (with f∅ = 1), and the generalized Kronecker
delta function δY receiving arbitrary sets, vectors, intergers,
etc., as its arguments, i.e. δY [X] = 1 if X = Y , and zero
otherwise.

Following [13], [14], we identify the target kinematic states
by assigning a distinct label `i drawn from a discrete label
space Lk to each state xi at time k, that is:

Xk , {x1, · · · ,xn} = {(x1, `1), · · · , (xn, `n)} ⊆ Xk × Lk (3)

where Lk is given recursively by the union of the label space
Lk−1 of the targets born prior to time k and the label space Bk
of the targets born at time k, Lk = Lk−1∪Bk. Then the distinct
labels provide the means to identify the tracks of individual
targets. Denote the function which extracts the labels of the
labeled set Xk given in (3) as L(X) = {`1, . . . , `n}, then for
a labeled set with distinct labels we have |L(X)| = |X|, where
|X| denotes the cardinality of the set X. Thus we define the
distinct label indicator function as ∆(X) , δ|X|[|L(X)|].

Definition 1: [13] A labeled multi-Bernoulli (LMB) RFS is
a labeled RFS with state space X and discrete label space L,
which follows the probability distribution

π(X) = ∆(X)ω(L(X)) [p(·)]X (4)

where

ω(L) =
∏
i∈L

(1− r(i))
∏
`∈L

1L(`)r(`)

1− r(`)

p(x) = p(`)(x)

(5)

in which r(`) and p(`)(·) are the existence probability and
probability density corresponding to label ` ∈ L.

Definition 2: [13] A generalized labeled multi-Bernoulli
(GLMB) RFS is a labeled RFS with state space X and discrete
label space L, which satisfies the probability distribution

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))
[
p(c)(·)

]X
(6)
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where C is an arbitrary index set, and∑
L⊆L

∑
c⊆C

w(c)(L) = 1∫
x∈X

p(c)(x, `)dx = 1

(7)

III. THE VO-VO FILTER

A. Multitarget System Model

Suppose that the multitarget state Xk−1 at time k-1 encap-
sulates N target states xk−1,i, i = 1, . . . , N , then the multi-
target state Xk at time k is the union of all surviving and new
birth targets

Xk =
⋃

xk−1∈Xk−1

Sk|k−1(xk−1)
⋃
Bk.

Given xk−1, the state at the next time is modelled by a labeled
Bernoulli RFS Sk|k−1(xk−1). The set Bk of new-born states is
modelled by a labeled multi-Bernoulli RFS, defined as follows.

A labeled state x = (x, `) ∈ X can either exists and
evolves to a new state x+ at the next time step with survival
probability PS(x) and probability density f(x+|x, `)δ`(`+)
(where f(x+|x, `) is the single target transition kernel), or
disappears with probability 1 − PS(x). Following [13], [14],
the set S of surviving targets at the next time is distributed as

fS(S|X) = ∆(S)∆(X)1L(X)(L(S)) [Φ(S; ·)]X (8)

where

Φ(S;x, `) =
∑

(x+,`+)∈S

δ`(`+)PS(x, `)f(x+|x, `)

+ (1− 1L(S)(`))(1− PS(x, `))

(9)

The expression for the multi-object transition density is given
by

f(X+|X) = fS(X+ ∩ (X× L)|X)fB(X+ − (X× L)) (10)

where fB(·) is the distribution of labeled multi-Bernoulli RFS
of newborn targets with label space B (see [13], [14], [31] for
more details).

Given a multitarget state Xk−1, the multitarget measure-
ment Zk−1 is the union of Bernoulli RFS Θk−1(xk−1) for
every xk−1 ∈ Xk−1 and the set Kk−1 of Poisson clutter or
false alarms

Zk−1 =
⋃

x∈Xk−1

Θk−1(x)
⋃
Kk−1.

Each state x = (x, `) ∈ X at time k is either detected by the
sth receiver with detection probability P (s)

D (x) and generates
an observation z(s) with likelihood g(s)(z(s)|x) or missed
with probability 1 − P (s)

D (x). The multitarget observation at
time k, Z(s) = {z(s)

1 , . . . , z
(s)

M(s)}, is the superposition of the
observations from detected objects and Poisson clutter with
intensity κ(s), false alarms. Assuming that, conditional on

X, detections are independent of each other and clutter, the
multitarget likelihood is given by [13], [14]

g(s)(Z(s)|X) = e−〈κ
(s),1〉(κ(s))K

∑
θ∈Θ

[
Ψ

(s)

Z(s)(x; θ)
]X

(11)

where e−〈κ
(s),1〉(κ(s))K = π

(s)
K (K) is the distribution density

funtion of the set K, θ : L→ 0, 1, . . . , |Z(s)|, such that [θ(i) =
θ(j) > 0] ⇒ [i = j] (meaning that each measurement is
assigned to at most 1 target). The function Ψ

(s)
Z (·; θ) is given

by

Ψ
(s)
Z (x; θ) =


P

(s)
D (x)g(s)(z

(s)

θ(`)
|x)

κ(s)(z
(s)

θ(`)
)

, θ(`) > 0

1− P (s)
D (x) θ(`) = 0.

(12)

The multi-sensor multitarget likelihood at time k, is given
by

gk(Zk|Xk) =
N∏
s=1

g
(s)
k

(
Z

(s)
k |Xk

)
(13)

where Zk =
(
Z

(1)
k , . . . , Z

(s)
k , . . . , Z

(N)
k

)
is N sensor observa-

tion set.

B. Multitarget Bayes tracking Filter

The multitarget Bayes filter can be written in the form of
Chapman-Kolmogorov equation and Bayes rule as follows [5],
[6]:
Predict:

πk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|Zk−1)πk−1(Xk−1|Z1:k−1)δX,

Update:

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)πk|k−1(X|Z1:k−1)δX

,

The above recursion shows how the posterior (or
filtering) density πk(Xk|Z1:k) is computed from the
prior density πk−1(Xk−1|Z1:k−1), state transition density
fk|k−1(Xk|Zk−1) and measurement likelihood gk(Zk|Xk).
The multitarget transition encapsulates the underlying models
of target motions, births and deaths, while the multitarget
likelihood combines the underlying models of detections and
false alarms.

The Vo-Vo filter is a recursion for progagating the pa-
rameters of the GLMB density forward in time when new
observation arrives. This recursion can be expressed as two-
stage procedure [13]:

1) Update : The posterior multitarget density based on the
standard multitarget observation likelihood function (11) is
given by

π(s)(X|Z(s)) = ∆(X)
∑
c∈C

∑
θ∈Θ(L(X))

ω
(c,θ)

Z(s) (L(X))
[
p(c,θ)(·|Z(s))

]X
,

(14)
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where

ω
(c,θ)

Z(s) (L) =
ω(c)(L)

[
Ψ̄

(s,c)

Z(s)

]J
∑
Y⊆L

∑
c∈C

∑
θ∈Θ(Y ) ω

(c)(Y )
[
Ψ̄

(s,c)

Z(s)

]Y
p(c,θ)(x, `|Z(s)) =

p(c)(x, `)Ψ
(s)
Z (x, `; θ)

Ψ̄
(s,c)

Z(s) (`)

Ψ̄
(s,c)

Z(s) (`) =〈p(c)(·, `),Ψ(s)
Z (·, `; θ)〉,

Ψ
(s)
Z (x, `; θ) is given in (12).
2) Prediction: Given a Vo-Vo filtering density (6) at time

k, the prediction density to time k + 1 is given by [13]

π+(X) = ∆(X)
∑
c∈C

ω
(c)
+ (L(X))

[
p

(c)
+ (·)

]X
(15)

where

ω
(c)
+ (L) =ωB(L ∩ B)ω

(c)
S (L ∩ L),

p
(c)
+ (x, `) =1L(`)p

(c)
S (x, `) + 1B(`)pB(x, `)

p
(c)
S (x, `) =

〈PS(x, `)f(x|·, `), p(c)(·, `)〉
γ

(c)
S (`)

,

p̄
(c)
S (`) =〈PS(·, `)f(x|·, `), p(c)(·, `)〉

ω
(c)
S (Y ) =[p̄

(c)
S ]Y

∑
J⊆L

1J(Y )
[
q

(c)
S (`)

]J−Y
ω(c)(J)

q
(c)
S (`) =

[
〈1− PS(·, `), p(c)(·, `)〉

]
.

C. Implementations

The number of terms in a Vo-Vo updated multitarget density
grows exponentially with time. Hence it is not practical to
exhaustively evaluate all terms. It is possible to use the K-short
path algorithm to compute the best terms of the prediction.
However, unless we keep a large number of predicted terms,
those with targets births are very few, which could lead
to tracking loss. To mitigate this problem, via unscented
trasformation, the predictions for target births and survivals
are performed separately and then combined afterwards [14].

Measurement gating and prunning are used in the Vo-Vo
filter to reduce the number of computations in the update stage.
For the single-sensor case, two techniques have been proposed
to perform the truncation without having to propagate all the
components: Murty’s ranked assignment algorithm and Gibbs
sampling [14], [30]. Murty’s algorithm can be used to deter-
mine a given number of highest weighted components of the
multi-object filtering density without exhausitively generating
all possible mappings, while Gibbs sampler can generate the
significant components of the multi-object filtering density for
large number of targets to be tracked.

Since the problem of tracking with Doppler measurements
in this work requires multiple sensors, the extension of the
Gibbs sampler implementation to multiple sensor proposed in
[49] is most appropriate. The implementation of the two sensor
Vo-Vo filter developed in [50] using Murty’s algorithm has a
cubic complexity in the product of the number of measure-
ments from the sensors. As a proof of concept of how the

Vo-Vo filter addresses multistatic Doppler measurements, the
simpler “iterated corrector” implementation that apply single-
sensor updates once for each sensor in turn has been used.
This strategy would yield the exact solution if all components
of the multitarget filtering density are kept.

IV. NUMERICAL STUDIES

In the present work, a total of 10 birth-and-death time-
varying marine ships, and misssed-detection-and-clutter obser-
vations are considered. The target transition matrix is given by
equation (1), in which

∆ = 0.12(h); σv = 0.27(M h−1), σψ = π/180(rad s−1).

The survival probability for the target is PS,k(x) = 0.95. The
birth process is assumed as labeled Poisson RFS with equal
intensity βk(x) =

∑4
i=1 w

(i)
β N (x; x̂

(i)
β ,Pβ) where all com-

mon existence probabilities w(i)
β = 0.15; the mean position

values are assumed to be

x̂
(1)
β =[17.20°N, 0, 110.7°E, 0, 0]T

x̂
(2)
β =[14.60°N, 0, 113.0°E, 0, 0]T

x̂
(3)
β =[17.20°N, 0, 113.0°E, 0, 0]T

x̂
(4)
β =[18.30°N, 0, 107.7°E, 0, 0]T ,

and

Pβ = diag([3.5′N, 26(kn), 3.5′E, 26(kn), 6π/180(rad/s)])2.

Ten targets are assummed to be distributed around the birth
model with the closest and farthest latitude distances being
2.85 km and 10.73 km, and the corresponding values for
longitute distances being 2.6 km and 10.6 km respectively.
The absolute velocities of the targets are assumed to be varied
from 2 to 32 kn (approximate 3.5km/h to 60km/h).

The positions of the multistatic passive Doppler radar trans-
mitter pt and receivers p

(i)
r , (i = 1, 2) are assumed to be

located at

pt = [15°22′58.82′′N, 109°07′11.52′′]T

with transmit frequency ft = 900MHz;

p(1)
r =[10022′31.28”N, 114028′13.45”E]T ,

p(2)
r =[17058′41.87”N, 106024′23.98”E]T

with the measurement space for each receiver
[−200Hz, 200Hz]; the measurement noise wk is zero-mean
Gaussian noise with covariance Qk = diag([1Hz2, 1Hz2]);
and c is the speed of light, respectively. The probability of
detection is state dependent and is given by

pD,k(x) ∝ N (x, [−200Hz 200Hz], [−200Hz 200Hz])2

with peak value of pD,k(x) = 0.98. Clutter follows a Poisson
RFS with an average rate of λc = 25.

Both multitarget scenario with total ten targets appearing
randomly in numbers, postitions, and velocities conducted in
the surveillance region [10°N 30°N ; 100°E 125°E] and
the corresponding estimates are shown in Fig.2. The tracker
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can exactly-track the targets in latitude and longitude with
respect to the time (Fig.3). There are some delays and misde-
tection in observations, which may be due to the distances
from the estimated positions and the actual positions. The
tracker shows the effectiveness of tracking algorithm when
the targets are merged or close together.

Optimal Sub-Pattern Assignment (OSPA) metric is a dis-
tance between two sets of points that jointly accounts for the
dissimilarity in number of points and the values of the points in
the respective sets. OSPA-on-OSPA, or OSPA(2), distance has
different interpretation to that of the traditional OSPA distance.

By using both Optimal SubPattern Assignment (OSPA) [51]
and OSPA(2) [47] with cut-off parameter c = 100, and p =1,
the tracking errors of the filters are evaluated and compared
as illustrated in Fig.4. The hidden meaning for using both
OSPA and OSPA2 in this paper is not only capturing the
errors between the true and estimated multi-target states at the
current time step only (via OSPA), but also capturing the error
between the true and estimated sets of tracks over a period of
time steps (via OSPA(2)).

Fig. 2: True tracks (dash-lines) and corresponding etimates
(solid lines) in latitude-longitude coordinates. Start/Stop posi-
tions for each track are illustrated by ◦/�.

V. CONCLUSION

This paper presented an efficient solution to the problem
of tracking an unknown and time varying number of marine
ships using multistatic Doppler measurements. In particular,
the iterated corrector version of the Vo-Vo filter was applied to
the problem to address Doppler measurements from multiple
sources. To the best of our knowledge, this is the first study to
apply principled online algorithms for tracking marine ships
with multistatic Doppler measurements.

Fig. 3: Estimates and track for latitude and longitude plane
versus time.

Fig. 4: The OSPA errors of distance, localization and cardi-
nality estimation
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