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ABSTRACT
Methods for accurate indoor spatial tracking remains a challenge.
Low cost and power efficient Bluetooth Low Energy (BLE) beacon
technology’s ability to run maintenance-free for many years on
a single coin cell battery provides an attractive methodology to
realize accurate and low cost indoor spatial tracking. However an
easy to deploy and accurate methodology still remains a problem
of ongoing research interest.

We propose a field deployable tracking system based on BLE bea-
con signals together with a particle filter based approach for online
and real-time tracking of persons with a body-worn Bluetooth re-
ceiver to support fine grain human behavior observations.

First, we develop the concept of generic sensor models for gener-
alized indoor environments and build pluggable sensor models for
re-use in unseen environments during deployment. Second, we ex-
ploit pose information and void constraints in our problem formu-
lation to derive additional information about the person tracked.
Third, we build the infrastructure to easily setup and operate our
tracking system to support end-users to remotely track ambulat-
ing persons in real-time over a web-based interface. Fourth, we
assess five different tracking methodologies together with two ap-
proaches for formulating pose information and show that ourmethod
of probabilisticmultilateration including themodeling of pose leads
to the best performance; a mean path estimation error of 23.5 cm
in a new indoor environment.
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1 INTRODUCTION
Today, there is an increasing interest in accurate indoor tracking
systems not just for supporting indoor navigation [6] or push ad-
vertising but also as potential tool for understanding the behavior
of people, especially older people, their cognitive decline and the
effectiveness of interventions to prevent such decline [18, 25, 26,
32, 34].

Although the problem of outdoor spatial tracking has largely
been addressed by the Global Positioning System (GPS), accurate,
easy to deploy and low cost spatial tracking in indoor environ-
ments remains a challenging problem. Consequently, in this pa-
per we consider the problem of developing technological tools and
methods to replicate the success of outdoor environments for in-
door environments in the context of a field deployable system for
behavior observations and understanding of older people through
fine grain spatial tracking, determining accurate traversal trajecto-
ries, in smart spaces [18, 26, 32].

Although there are several wireless technologies that can be
used for indoor spatial tracking, including WiFi, Bluetooth, RFID,
cameras, ultrasonic range-finders, accelerometers amongst many
others [1]; we aim to exploit Bluetooth Low Energy (BLE)—also
known as Bluetooth Smart—as it offers many advantageous fea-
tures over other wireless sensors such as: i) ubiquity in terms of
a technology; ii) power efficiency; iii) low cost; iv) low form fac-
tor devices; and v) ability to operate for several years on a coin
cell battery to provide ease of deployment while being unobtrusive
to daily activities in a body-worn configuration or to the aesthet-
ics of the environment in their deployment as beacons. Further-
more, BLE advertising channels used in beaconing occupy spaces
between WiFi channels and thus signals are less susceptible colli-
sions with WiFi channels.

Existing research has achieved, mostly, localization accuracy
levels that are considered reasonable for commercial applications
such as indoor navigation—see Section 7. Although commercial so-
lutions1 have been designed for a range of situations, they do not
focus on tracking mobile targets with high accuracy and estimat-
ing trajectories but instead focus primarily on proximity detection.
Further, proposed solutions yielding high accuracy are suited for

1for example, see:https://estimote.com/
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the testing environment and are therefore not suitable for field de-
ployments without extensive and cumbersome calibration of mod-
els such as fingerprints of signals in new environments as discussed
in Section 7.

1.1 Contributions
Therefore, this paper aims to contribute to research towards real-
izing an easily deployable and accurate spatial tracking methodol-
ogy. Our system continuously tracks moving targets as opposed
to locating targets and therefore we solve a tracking problem as
opposed to localization or positioning problem. Thus, we handle a
continuous stream of beacon data collected from body-worn sen-
sors and use a messaging bus architecture capable of handling mul-
tiple data sinks placed on the bus together with recursive Bayesian
filers to perform online and real-time tracking and computation of
trajectories.

In particular we make the following contributions in this work
towards an accurate and real-time method to realize a field deploy-
able BLE based spatial tracking methodology:

Exploit pose information A key challenge is to manage uncer-
tainty created by noisy RSSI measurements of BLE beacons.
We model and exploit the pose of the person with the wear-
able BLE device to improve tracking accuracy.

Formulate void constraints We recognize thatmovement of peo-
ple are constrained by the layout of indoor spaces such as
walls.Thereforewe formulate void constraints to impose prac-
tical limitations pertinent to our tracking problem.

Propose and develop generic sensor models For a deployable
system that is not specific to a particular room or environ-
ment, we require models for both the movement of targets—
people in our application—and the sensors capable of being
generalized over hitherto unseen environments. We realize
that most indoor environments are similar, such as room,
corridors, living rooms. Therefore we address this problem
by generalizing environments into types that are commonly
seen in an indoor setting. Subsequently, we create generic
sensor models that are pluggable into hitherto unseen envi-
ronments. This removes the to conduct cumbersome and te-
dious off-line training to develop environment specific sen-
sor models. We demonstrate that the generic sensor models
can achieve highly accurate results through evaluation of
tracking accuracy in new unseen settings.

Experiments and Comparisons Wederive, implement and com-
pare five approaches for modeling raw measurements and
their likelihoods for the tracking algorithm formulated with
Bayesian filtering techniques to address the uncertainty im-
posed by measurement noise. We show that our probabilis-
ticmultilateration based tracking approach that incorporates
pose estimations performs better than existing methods we
compare against.

bTracked system release We have developed bTracked, a user
friendly deployment and tracking information visualization

tool to allow the rapid deployment of spatial tracking so-
lutions in the wild as well as support the efforts of the re-
search community—see footnote for project data, demo video
and source code released 2.

1.2 Outline
The rest of the paper is organized as follows: Section 2 presents
background work related to methods for estimating distance as
well as Bayesian filters—in particular, particle filters—used in our
problem formulation. In Section 3, we provide an overview of the
bTracked system architecture and present the problem formula-
tion in Section 4 along with key concepts we have employed to en-
sure generalizability of our results to unseen environments as well
as ensure the practicability of our approach. Section 6 describes
experiments and results. We defer related work to Section 7 and
conclude our work in Section 8.

2 BACKGROUND
2.1 Distance estimation methods
The central component of BLE localization is an accurate estima-
tion of distances from a target device and reference beacons po-
sitioned at known locations. The four most commonly used ap-
proaches include:

• Received Signal Strength Indicator (RSSI) involves mea-
suring the strength of a signal at the receiving device; often
reported in dBm.

• Time of Arrival (ToA) relies on the time required for a
signal to travel from emitter to receiver to calculate the in-
tervening distance. However, this requires that the devices
be precisely time synchronized with each other.

• Time Difference of Arrival (TDoA) determines position
by comparing the difference in time for a signal to arrive at
each of the receivers.

• Angle of Arrival (AoA) relies on measuring direction of
the signals at the receiving device and adds a layer of com-
plexity to the receiver and antenna system due to the need
for measuring the direction of arrival of a signal.

Of the methods discussed, RSSI is the most attractive option due
to the relatively simple hardware requirements and the near uni-
versal capability of off-the-shelf BLE technology to measure and
report RSSI values. Consequently, this paper will focus on using
RSSI for estimating distances.

Although RSSI and distance are inversely correlated, RSSI val-
ues can vary considerably for different devices (even at the same
distance) due to the difference in, for example, transmit power and
antennas used. Even for the same device, RSSI is subject to large
fluctuations due to factors such as radio signal reflections, refrac-
tion, attenuation (by obstructions) as well as orientation of trans-
mitter and receiver [31]. Nevertheless, numerousmodels have been
proposed to approximate the relationship [8].The log-normal prop-
agation is a commonly used wireless signal propagationmodel due
to its simplistic nature. It can be applicable to both indoor and out-
door environments [11]. We describe the model below:

2Demonstration video and source code: https://github.com/AdelaideAuto-IDLab/
bTracked
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Figure 1: (left) Overview of the bTracked system, (right) a base-station (BLE transceiver and single board computer).

Pr (d) = Pt (d0) − 10n log
(
d

d0

)
+ Xσ

where Pr is power of the wireless signal at the receiving end, Pt
is the power of the signal at the transmitting end, d is the distance
between transmitter and receiver,d0 is a reference distance usually
taken to be 1 m, n is the path loss exponent—values are generally
within the range of 2 to 4, depending on the environment i.e. in-
doors or outdoors—and Xσ is Gaussian noise (zero mean and vari-
ance σ2) used to model the shadowing effects. More commonly, a
simplified log-normal model of the form Pr (d) = A− 10n log(d)+
Xσ where, A and n are simply parameters defined/learned for a
specific environment is used.

2.2 Particle Filters
A particle filter is a Sequential Monte Carlo technique for imple-
menting Bayesian filtering used in our problem formulation—see
Section 4—to realize accurate tracking under measurement uncer-
tainty. It works recursively, representing the posterior distribution
using particles, which are updated using ameasurement likelihood
model together with observations—readers are referred to [2, 3] for
further details while we briefly discuss the concepts below.

The Motion Model describes how the state x—all the properties
that define the system at a certain time—evolves over time:xt+∆t =
ft (xt ,vt ) where v is independent and identically distributed (iid)
process noise. Section 4 describes motion models used in our sys-
tem.

TheMeasurementModel describes the relationship between the
observation or measurement zt and true state of the system: zt =
ht (xt ,ut ) where u is iid measurement noise. We formulate and
evaluate five different measurement models in our system—see
Section 4.3.

Given these models, the particle filtering algorithm consists of the
following four steps:

Initialization.A set of particles are drawn from a distribution rep-
resenting the initial belief p(x0), denoted by:

χk := {xm,k }Mm=1 (1)

whereM is the number of particles.
Prediction. Each of the samples are propagated through the mo-
tion model fk to represent the a priori distribution, p(xk |zk−1),
hence:

xm,k := fk (xm,k−1,vm,k−1) form = 1, ...,M

Update. Given an observed measurement zk , the weight for each
of the particles in χk is updated using the measurement model:

wm,k := p(zk |xm,k ) form = 1, ...,M

Resampling.After several iterations, it is possible that most of the
particles have negligible weight, leaving the entire state distribu-
tion to be modelled by a few (sometimes even one) particles (parti-
cle degeneracy problem). To avoid this issue we resample the set of
particles ensuring that particles with low probability are removed
and replaced with other particles that may have higher weights.
This is achieved through creating a new χk , where each sample is
chosen with probability proportional to its weight.

χk := {xn,k |P(xn,k = xm,k ) ∝ wm,k } for allm, n
Theresulting χk represents the a posteriori distributionp(xk |zk ).

3 SYSTEM ARCHITECTURE
In contrast to past research, we explicitly consider the deployabil-
ity aspects of the system in our design. Thus, we consider how to
best allow a user to set up a tracking system starting from off-the-
self beacon technologies and to allow easy viewing of the trajecto-
ries followed by the tracked person in real-time. Figure 1 presents
a high level view of the individual components of the bTracked
system and their interactions.

We use Texas Instruments (TI) BLEBeacons based on the CC2541
chip as the emitter of the beacon signal. They are configured to ad-
vertise 10 times per second at a transmit power of -23 dBm. Each
beacon has a unique MAC (Media Access Control) address, that
can allow it to be uniquely identified by the rest of the system.
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The only configuration required for the beacons is the transmis-
sion power to ensure consistency in signal strengths across all bea-
cons.Their small size and low cost allows them to be deployed very
densely around a tracking area. From testing, we decide they are
best placed on walls around 1.5 m from the ground, and at approx-
imately 2 m intervals from each other.

A TI SensorTag CC2650 is used as the receiver of the BLE signals
from the beacons. The SensorTag is small, can be worn around the
neck with a simple lanyard and, thus, does not obstruct user activi-
ties.The SensorTag continuously scans for beacon signals, extracts
the RSSI from each of these signals, and subsequently broadcasts
a packet containing the detected beacon IDs along with their RSSI
to a base-station—see Figure 1—which then forwards this data to a
central server. Each SensorTag has a uniqueMAC address allowing
it to be uniquely identified and associated with a specific user.

End-user interaction with the system is by way of a web appli-
cation, bTracked Web App. The web app consists of a Deployment
Plan Designer Tool illustrated in Figure 1 that allows the user to
reconstruct the environment in which the tracking system is to be
deployed. The user must enter wall and positions and IDs of the
beacons used in to the system (typically by tracing a floor plan),
and optionally the location and sizes of any immovable obstacles
within the environment. This is linked to a database that stores
different maps. We define a map as being the state space or the
tracking environment, consisting of rooms, walls, beacons and ob-
stacles. The second part of the web app is the Real Time Trajectory
Visualization Tool, which shows themovement of the person in real
time. Upon receipt of a new RSSI packet, the server executes the
tracking algorithm, and then renders the display with the updated
position of the person.

4 PROBLEM FORMULATION
Our primary aim is to be able to actively track a moving target—
a person wearing a SensorTag in our application context—within
a given map. It is assumed that the system has knowledge of this
map and the state space. This is achieved by defining the area that
we are interested in using the Deployment Plan Designer Tool and
overlaying this with an xy plane and coordinate system.

The state of the target (a person in our problem) of interest is
x = [x , s]T ∈ R4 × S comprises of its kinematic state, position
and velocity, x = [px , ṗx ,py , ṗy ]

T in the xy plane, and its dynamic
mode s ∈ S ⊂ N (a natural number). The dynamics of a mobile tar-
get can bemodeled by the jumpMarkov system (JMS)whose evolu-
tion follows a Markov chain [4]. We assume that the target motion
s follows one of two dynamics models: i) the constant velocity (CV)
motion model, ii) the stationary motion model as described below.

TheConstant Velocity (CV)MotionModel.Themodel assumes
that a target is moving with constant velocity and applies to a per-
son moving around an environment. For the CV motion model,
we use standard kinematic equations with zero acceleration. For a
given epoch with duration ∆t , we update the state given by:

xk = ACV xk−1 + qCV , (2)

where ACV =

(
1 ∆t
0 1

)
⊗ I2, ⊗ denotes for the Kronecker tensor

product operator between two vectors, and qCV ∼ N (0,QCV ) is a
4 × 1 matrix representing zero mean Gaussian process noise, with
covariance
QCV = σ2

CV

(
∆3
t /3 ∆2

t /2
∆2
t /2 ∆t

)
⊗ I2, where σCV is the standard de-

viation of the process noise parameter. Notably, it is unrealistic to
assume a person moves strictly at constant velocity, therefore, we
add dynamic noise qCV and assume this noise is based on a nearly-
constant-velocity model successfully used in [10] and [16].

The Stationary (Stat) Motion Model. This model applies for all
cases where a person is in a stationary position over a period of
time, either standing or sitting at a particular location. In this state,
the position does not change and the velocity in both directions is
zero. Thus, we can expressed this model as:

xk = xk−1 + qStat (3)

where qStat ∼ N (0,QStat ) is a 4×1matrix with zero mean Gauss-
ian process noise with covariance
QStat = σ2

Stat∆
2
t [1 0 1 0]

T , where σStat is the standard deviation
of process noise,∆t is the measurement time interval, and In is the
n×n identity matrix. Notably, for the stationary motion model, the
process noise σStat should be zero. However, we set σStat to be a
small value instead of zero to avoid the particle degeneracy prob-
lem [7].

Now, the motion model sk at time (k − 1,k] is modeled as the 2-
state first-orderMarkov chain using a known transition probability
matrix π , given by:

π si j := P(sk = j |sk−1 = i),∀i, j ∈ S, (4)

such that π si j ≥ 0,
∑
j π

s
i j = 1.

4.1 Managing Variations in Pose
We conducted an experiment where we measured the RSSI when
the person is in different orientations with respect to the beacon;
and we observed significant differences in RSSI despite the person
being at the same position. Therefore, it is important to consider
the sensor orientation when using RSSI as a measure of distance.

The simplest approach is to place the beacons on the ceiling, and
have SensorTag attached perhaps over the shoulder of the person
or on the head. However, this is not user-friendly in practice. Con-
sequently, we resort to the solution of monitoring the pose of the
person as well as their position. We define pose as being the orien-
tation of the person or the direction in which they are currently
facing such that the SensorTag is oriented in the same direction.
We consider two methods to achieve this:

4.1.1 Measurement of pose. The first method deals with a mea-
surement approach for pose. We train a classifier that takes RSSI
reading R = {r1, r2, ..., rM } forM beacons as input, and outputs a
class label specifying a direction or pose. To train this classifier, we
use the fingerprints from Section 5.1 projected on to a given map.
For each possible (px ,py ,θ) in the map, we select an RSSI reading
from the RSSI distribution collected during scene analysis for each
of the beacons.These are used to train the classifier; thus obtaining
a function P that maps R to a pose θ .

4
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4.1.2 Estimating Pose. Thesecondmethod is to incorporate pose
as an additional state variable to be estimated.This requires a slight
alteration of the motion model as the pose also needs to be prop-
agated with time along with the original state variables. Let θ ∈
Θ = {0, 1, 2, 3} denote the pose of the target. Here, for simplic-
ity, we discretized the pose into 4 possible directions with respect
to the beacon (see Figure 2): Towards, Leftwards, Rightwards, and
Away-from, which corresponds to θ = 0, 1, 2, 3, in order.

Pose Transition Probability. The motion model θk from time
k − 1 to time k is modeled as the 4-state first-order Markov chain
using a known transition probability matrix πθ , given by:

πθi j := P(θk = j |θk−1 = i),∀i, j ∈ Θ, (5)

such that πθi j ≥ 0,
∑
j π

θ
i j = 1.

4.2 Void Constraints
Particle filters allow us to easily incorporate additional knowledge
into the system. In an indoor setting, there are likely to be furniture
or obstacles all around an environment. We consider the following
constraints: i) it is impossible to cross any walls; and ii) it is impos-
sible to occupy the same space as an obstacle. We ensure that our
motion model abides by these void constraints.

4.3 Measurement Likelihoods
Themain challenge in developing a tracking algorithm is the deriva-
tion of accurate measurement and noise models to update our state.
In a particle filter, we need to compute the observation or measure-
ment likelihood, p(zk |xm,k ), for each particlem, and then assign
weights based on this likelihood.This likelihood describes the prob-
ability of receiving an RSSI measurement R = {r1, r2, ..., rb } from
the set of beacons B, where rb is the RSSI measurement from bea-
con b ∈ B, given state x . We discuss the five methods we consider
in computing this likelihood below. Prior to proceeding further, it
is important to note that, although we use sensor models devel-
oped through scene analysis, we provide a method to generalize
these over a wide set of unseen environments as described in Sec-
tion 5:

• The RSSI-Distance model is described in Section 5.2.
• The fingerprint models are described in Section 5.1.

Simple Trilateration. This is one of the simplest methods in the
literature [9, 23, 29], and we use this method as a baseline. An
RSSI-distance model is used to convert all RSSI readings to dis-
tances, then trilateration is used to evaluate a location l = (x ,y)
on the floor plan. We assume a Gaussian distribution with mean as

Towards

Rightwards

Away from

Leftwards

Figure 2: An overview of themethod used to collectmeasure-
ments for creating the generic fingerprint models. For each
25 cm × 25 cm interval we capture sensor data for 4 different
orientations.

the estimated location and standard deviation based on the RSSI-
Distance model and the average distance to each beacon. Thus, the
likelihood is given by:

p(l |xm,k ) ∼ N
(
| |l − xm,k | | − dm,b ,σ(mean

b ∈B
dm,b )

)
where | | · | | denotes the norm operator, dm,b is the distance be-

tween the beacon b and the particlem, and σ(dm,b ) is the standard
deviation obtained from the RSSI-Distance model—see Equation 7.

Probabilistic Multilateration.This method is similar to the one
above except that we now assume a probability distribution based
on the log-normal model [5][24]. Thus, the likelihood of an RSSI
reading, r , from beacon b can be described by:

p(rb |dm,b ) ∼ N
(
rb − µ(dm,b ),σ(dm,b )

)
where µ(dm,b ) is the mean RSSI obtained using the log-normal

model and σ(dm,b ) is the standard deviation—see Equations 6 and
7, respectively.Then, assuming the independence of individual RSSI
measurements, the likelihood is given by:

p(R|xm,k ) =
∏
b ∈B

p(rb |dm,b )

Kullback-Leibler Divergence. Unlike the previous methods that
are model-based, the Kullback-Leibler (KL) divergence method is
based on RSSI fingerprints obtained through extensive scene anal-
ysis. This approach has been used by [19, 26]. A common down-
side of such approaches is that they are specific to an environment,
however we discuss how we can utilize this approach for an an un-
seen environment using our generic sensor models.

In general, KL divergence is a method that can be used to com-
pute the difference between two probability distributions. For two
discrete probability distributions P andQ , the KL divergence is de-
fined as:

DKL(P | |Q) =
∑
i
P(i) ln

(
P(i)

Q(i)

)
where DKL(P | |Q) is the information lost when Q is used to ap-
proximate P . In our case, where R = {r1, r2, ..., r |B |}, is a set of
RSSI readings from |B| beacons. Therefore, for our problem, we
evaluate KL divergence between the measurement and the stored
fingerprints F constructed for a given map (floor plan):

DKL

(
p(R|xF )| |p(R|x)

)
=

|B |∑
i=1

p(ri |xF ) ln
(
p(ri |xF )
p(ri |x)

)
where p(R|x) is probability of observing RSSI reading R given

state x , and p(R|xF ) is probability of observing R corresponding
to state x in the stored fingerprints F for a given map (floor plan).

We introduce a kernel function through the exponentiation of
the above KL divergence and this allows the computation of likeli-
hood, thus

p(R|x) = e
−DKL

(
p(R |x ) | |p(R |xF )

)

5
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Figure 3: Generic models for different environment types for a Towards pose shown in Figure 2. The beacon is at (0,200).
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Figure 4: RSSI distribution as as a function of distance for each environment type.The corridor environment shows significant
multipath affects compared to the other environments.

Classification. In this approach, a classifier is used to determine
the state based on a predicted position vector l = (x ,y). We con-
sider this approach since past studies, as stated in [15], have used
this method. Though any classifier can be utilized, we focus on
using k-Nearest Neighbor (kNN) classifier as it is both an elegant
model to the problem and simple to realize. In this approach, we
take the received RSSI readingR and use the model built with kNN
to classify it to a location lf stored in the fingerprints F . After de-
termining a location lf , the likelihood is then computed as

p(lf |xm,k ) ∼ N
(
| |lf − xm,k | | − dm,b ,σ(mean

b ∈B
dm,b )

)
Probabilistic Classification. This method is a novel extension
of the previous classification approach. Some, classification algo-
rithms can be employed to generate a confidence for predicted
class labels. In kNN, for example, this depends on the proximity
to the predicted class, and to those of the neighboring but not pre-
dicted classes.

In contrast to the classification method, we use the prediction
confidence for each class to assign likelihoods. In our case, RSSI
readings R as input data can produce a confidence for a class label
lf . We can then define a likelihood based on class confidence val-
ues as p(R|xm,k ) = confidence(lf ). In the case where a particle
xm,k does not lie on a fingerprinted location lf , we find the closest
lf based on Euclidean distance.

5 ADDRESSING DEPLOYABILITY
One of the major contributions of our work is our advancements
of the system towards deployability. To accomplish this, we rely on
generalized sensor models, which we develop offline, and can be
easily adopted to fit into new unseen environments with minimal
effort. To ensure our models from scene analysis are generic and

cover all cases of common rooms types in an indoor house setting,
we divide the rooms into three main categories:
Empty Room A roomof arbitrary size that is primarily comprised

of empty space.
Cluttered Room A room of arbitrary size where there is ‘clutter’

in the form of furniture.
Corridor A narrow room or walkway of width roughly around

100 to 200 cm.
Given the similarities in the architecture of typical houses—such

as bed rooms, lounge rooms, hallways—in this study, we assume
that all rooms will fall into one of the above categories.

5.1 Generic Fingerprint Models
We develop generic models that enable us to automatically gener-
ate RSSI distributions for a custom map. To accomplish this, we
first undertake a scene analysis study to collect fingerprint data
for a beacon that is placed in each of the above environments. We
consider RSSI up to 200 cm away from the beacon. We record RSSI
readings from the beacon at 25 cm intervals to create a map of the
RSSI around the beacon. We conduct this experiment for each of
the four directions shown in Figure 2: i) facing towards beacon; ii)
facing away from beacon; iii) leftwards from beacon; and iv) right-
wards from beacon.

We use a 2D kernel density estimation (KDE) function to create
a generic model from these RSSI readings. The KDE is defined as:

f̂h({x ,y}) =
1

n

n∑
i=1

1

hxhy
K

(x − xi
hx
,
y − yi
hy

)
where n is the number of RSSI readings, K is a kernel function

based on the mean RSSI readings and hx and hy are bandwidths
based on the standard deviation of these readings. The generated
RSSI maps are shown in Figure 3.
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Hence, when presented with a new environment, we can gener-
ate customized sensor models for that environment automatically
by simply overlaying the RSSI distribution of each deployed bea-
con onto the map.

5.2 Generic RSSI-Distance Models
We also develop multiple parameterised RSSI-distance models for
each of the different environment types. This allows us to dynami-
cally select the correct model to use depending on our current en-
vironment. To estimate the parameters of these models, we record
RSSI measurements at regular distances from a beacon up to a
distance of 200 cm. We collect multiple readings at each point to
record the distribution of RSSI values at each point. Figure 4 shows
a plot of this distribution along with the mean for each of the en-
vironment types. We can represent the mean (6) and standard de-
viation (7) of RSSI as:

µ(d) = A − 10n log(d) (6)
σ(d) = ld + c (7)

where d is distance from transmitter to the receiver. In deriving
the model for the standard deviation (7) of RSSI, we assume that
noise σ(d) increases linearly with distance—see Figure 4. Thus, we
estimate the parameters A, n, l and c for each of our environment
types using a least squares fit and the results are given in Table 1.
In our implementation, each beacon is associated with a different
RSSI-distancemodel based on its surrounding environment andwe
select the RSSI-distance model based on Table 1.

Table 1: Estimated parameters for RSSI-distance models.

Room type A n l c

Empty Room -14.52 2.54 0.77 0.02
Cluttered Room -9.77 2.66 4.59 0.01
Corridor Room -41.58 1.24 2.91 0.01

Generic RSSI-Distance Models with Pose: As mentioned in the
section 4.1, pose contributes significantly to the RSSImeasurements.
Given the estimated pose θ relative the the beacon b (see section
4.1.2) of a target at location (px ,py) in the xy-plane, the mean and
standard deviation of RSSI measurements can be modeled as:

µ(d,θ ,px ,py) = A − 10n log(d) +Gb (θ ,px ,py), (8)
σ(d) = ld + c . (9)

Here,Gb (θ ,px ,py) denotes the normalized RSSI gain based on the
relative pose θ from the target at location (px ,py) to the beacon b.
In this work, we use the fingerprint RSSI readings (as illustrated in
Figure 3) to calculate the normalized RSSI gain Gb (θ ,px ,py).

6 EXPERIMENTS AND RESULTS
6.1 Settings
We conduct our field experiment within an indoor housing envi-
ronment with multiple rooms that is intended to reflect how the
system is expected to be used to create a smart space cable of spa-
tially tracking its residents. Our testing environment is a house
with an area of 7.5 m× 9.0 m (67.5m2), with four rooms: one empty

Table 2: Comparison of mean errors for the five likelihoods.

Mean Path Estimation Error (cm)
No Pose Pose in R Pose in x

(a) Prob. Multilateration 38.9 33.9 23.5
(b) Trilateration 85.5 77.2 51.9
(c) KL Divergence 63.9 61.3 115.7
(d) Classification 63.9 61.3 49.9
(e) Prob. Classification 116.5 106.6 72.2

room (room 2), one cluttered room (room 1), one narrow corridor
and a large empty hallway that interconnects the other three. Fig-
ure 1 illustrates the map generated using the bTrackedWeb App
based on the floorplan as well as the position of the 21 beacons
distributed at approximately 200 cm intervals, across the map, and
150 cm above ground level. The test path trajectory that makes use
of all four rooms and consequently, all of our generic sensor mod-
els is shown in Figure 5. In addition, the figure shows obstacles
and areas where the person is not allowed to be in or cannot enter
or are not part of an area being monitored—these areas are repre-
sented by the gray areas—and reflect the real environment under
consideration. To verify the accuracy of our system in a new un-
seen deployment environment, none of the rooms used in this test
environment were used for model building.

To record ground truth data to allow us to assess our estima-
tions, we created a discretized path by taking 20 reference points
regularly distributed across the path, and then, recorded the time
it takes to move from one point to another. Assuming the person
walks at constant speed throughout, we interpolated the position
and time in between the reference points. The error at each esti-
mated position is considered as the distance between the actual
position and the estimated position, and the overall error of the es-
timated path is considered as the mean of these errors. Because of
the generally noisy nature of the received RSSI, we repeat this ex-
periment five times using each of our approaches developed in Sec-
tion 4. Consequently, we present the mean error of each approach
averaged over five runs in Table 2. The best method for includ-
ing pose is highlighted in bold for each of the 5 methods. Figure
5 shows the estimated path trajectory for these five methods—see
the green line—for a single run where the error bars show the 95%
confidence interval.

6.2 Results
Theresults show that probabilisticmultilateration achieves the best
estimated path trajectory in all cases. Although multilateration is
often identified as being inferior to fingerprinting techniques, this
is not the case in our work. There are two potential explanations.
First, our fingerprinting techniques are based on generic sensor
models built in spaces different from those used in testing, there-
fore it is likely that the fingerprints are not completely accurate in
describing the unseen environment compared to if the calibration
was conducted in the testing room as with past work reporting
higher accuracy over multilateration. Second, our use of a mode
filter along with the retention of only beacon measurements pro-
ducing the strongest RSSI readings and using these beacon data as
the basis for multilateration results inmore accurate estimations of
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(a) Probabilistic Multilateration

(b) Trilateration (c) KL Divergence

(d) Classification (e) Prob. Classification

Figure 5: Path trajectories for different approaches (the
starting position is at the top right corner of the map)

distances. Notably, the standard deviation in RSSI measurements
is much lower when the beacons are closer—i.e. for strong RSSI
readings—and we can observe this in Figure 4 and therefore rely-
ing on the strongest RSSI data from a set of measurements leads to
less measurement uncertainty.

Introducing pose into the measurements produces slightly bet-
ter results than without, in all cases. However, the improvement
obtained is very minimal because of the large uncertainty associ-
ated with our pose measurement method based only on RSSI data.
Incorporating pose as part of the estimated state leads to consider-
ably better performance in all methods except for KL divergence.
When pose is estimated as part of the state, we are not only able to
better model measurement uncertainty but also system dynamics—
motion of a person that includes turns, see (5).

The probabilistic classification method does not perform better
than the the standard classification method in all cases. The prob-
abilistic classification method relies on the confidence of each pre-
dicted label; thus, the performance of this approach depends on

how well the classifier produces a confidence distribution reflec-
tive of the likelihood of the measurement. Overall, our results in-
dicate that probabilistic multilateration that also models pose out-
performs all other methods.

7 RELATEDWORK
The field of spatial tracking with Bluetooth is certainly not new.
One of the earlier works in this field is by Feldmann et al. [9],
where the authors tried to conceptualize a positioning systemwith
Bluetooth for indoor situations. The study used 3 access points at
known random locations as beacons, and a person holding a Per-
sonal Digital Assistant (PDA) as the receiver. A log-normal propa-
gation model determined distances from Received Signal Strength
Indicator (RSSI) readings and trilateration based on least squares
estimation provided position estimates.Wang et al. [30] considered
an almost identical problem, using a log-normal model, and three
positioning techniques (variations of trilateration); namely least
square estimation (LSE), three-border positioning and centroid po-
sitioning methods.

Another similar work by Raghavan et al. [23] tracked a robot
undertaking a random walk. Instead of standard trilateration, they
used a variation of this known as iterative trilateration. The study
achieved a mean error of 0.78 m for a furnished room but used long
measurement times—a stationary robot—to collect large amount of
RSSI readings for the same position and thus making their system
more of a localization system than a tracking solution.

Another branch of prior work in the field of BLE tracking in-
volves the use of fingerprinting or scene analysis techniques. This
technique is based on careful prior characterization and storage of
RSSI values at all locations within the environment; these can then
be used as a reference when executing the positioning algorithm.
Fingerprinting has been shown to be a more accurate technique
at positioning a target [17]. However, this comes at the expense
of lower efficiency due to higher memory usage and training time
through the cumbersome collection of data. Nevertheless, this ap-
proach has been used by, for example, Pei et al. [21] and Iglesias et
al. [12] with promising results.

Subhan et al. [28] created a hybrid approach that combined fin-
gerprinting with trilateration to compute the final position. The
highest accuracy they achieved was 2.67 m; relatively lower than
those reported in other works. A unique approach is explored by
Priyantha et al. [20], the authors used the Min-Max algorithm for
localization. Distances obtained from a log-normalmodel produced
a rectangle around the area the device is likely to be in, and the de-
vice then localizes itself within this rectangle through a stigmergic
process. They used 8 beacons in a 6 m × 6 m room, and achieved
an error of 1.8 m. Recent work has applied Bayesian filtering tech-
niques. For instance, the study by Martella et al. [18] investigated
the behaviors of museum visitors by positioning BLE beacons at
the exhibits. Their systems utilize particle filters to estimate the ex-
hibits each visitor observes and the order in which the exhibits are
visited.

Summary. Table 3 presents a summary of related works, includ-
ing studies using wireless network signals. We can see most accu-
rate methods use scene analysis techniques such as finger printing
and most studies are focused on localization.
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Table 3: Summary of studies using RSSI from BLE beacons for localization and/or tracking with reported accuracy.

Related Work Setting & Environment Techniques Root mean square error (m)
Feldmann et al. [9] 2003 Area: 8 m × 6 m empty room. 3 beacons (Implemented on a PDA based

receiver).
Log-normal model propagation model. Trilateration with
least squares estimation (LSE).

2.08 (localization of static
objects)

Klepal & Beauregard [13] 2008 Area: 50 m × 50 m floor area. WiFi access points. Back tracking particle filter in conjunction with finger-
printing method (used wireless LAN fingerprints instead
of BLE beacons).

1.34 (WiFi)

Raghavan et al. [23] 2010 Area: 6 m × 8 m partly furnished room. 3 beacons (USB dongles). Log-normal propagation model. Mobile robot receiver per-
forming randommotion, stop and perform 5 queries to iter-
atively improve location accuracy through iterative trilat-
eration.

0.427 (localization of static
observers)

Mirowski et al. [19] 2011 Area: 40 m × 40 m cluttered office. WiFi access points. Fingerprinting method in conjunction with KL divergence. 1.16 (WiFi)
Subhan et al. [28] 2011 Area: 10 m × 12 m room. 3 beacons (USB dongles). Nokia 5130 mobile as

a receiver.
Fingerprinting method with KNN. Trilateration using dis-
tances obtained from log-normal propagation model.

2.67

Zhu et al. [33] 2014 Unknown testing environment. CC2540 development boards with inte-
grated BLE reference nodes to receive signals.

Log-normal propagation model. Use weighted windows to
reduce signal fluctuations with offline trained models for
online localizations. Positioning solved with least squares
estimation.

1.5 (localization)

Priyantha et al. [22] 2015 6m× 6m officewith obstacles. 8 beacons in combinationwith ultrasound
emitters.

Log-normal propagation model. Min-Max algorithm 1.8 (localization of observer)

Kriz et al. [14] 2016 Area: 52 m× 43 m floor with multiple rooms. 4 WiFi emitters and 17 bea-
cons. Mobile phones as receivers

Fingerprinting method in conjunction with KNN. 0.77 (localization of static
objects)

Li et al. [15] 2016 Area: 20 m × 15 m floor area with one hallway and 5 rooms. 8 WiFi
emitters.

Fingerprinting method using KNN. Particle filter with like-
lihood assuming Normal distribution around measured po-
sition.

1.3 (WiFi)

Subedi et al. [27] 2016 Area: Corridor environment of width 2.5 m. 14 beacons. RSSI filtering using moving average filter and Kalman filter.
Weighted centroid localization.

1.58

Martella et al. [18] 2016 100 m × 25 m with 60 exhibits. BLE beacons at each exhibit. 60 beacons.
Receiving device worn around the neck.

Particle filter. Density-based filter. Majority-vote filter. face-to-face proximity only

Chandel et al. [6] 2017 Area: 4 beacons with usable RSSI at each grid for a receiver where line of
sight BLE beacons distances are around 8 m

BLE beacons for localization and IMU sensors embedded in
the phone to track users using a particle filter.

0.9 (BLE localization, IMU
sensors for tracking)

Ours Area: 7.5 × 9 m. Corridor, hallway, one rooms with open spaces, one
cluttered room. 21 beacons.

RSSI and pose informationwith void constraints, particle fil-
ter with probabilistic multilateration.

0.235

Our probabilistic multilateration based tracking approach per-
forms better than other methods we have implemented and com-
pared with. More significantly, our approach to incorporate pose
estimation and void constraints outperformsmethodswithout pose
estimation; the probabilistic multilateration with pose outperform-
ing all other methods. Further, our focus on developing a method
for obtaining accurate real-time tracking of a mobile target stands
in contrast to existing BLE based studies that perform localization
and/or consider only static objects. Our proposed approach to build
generic sensor models removes the need for labour intensive scene
analysis. In addition to methodological advancements over exist-
ing studies, our performance evaluation study is conducted in an
unseen environment and we release a complete system implemen-
tation to the research community.

8 DISCUSSION AND CONCLUSION
Overall, we have successfully designed a framework for a deploy-
able online real-time indoor spatial tracking system capable of fine
grain spatial tracking for human behavior observation applications.
We also demonstrated system in a complex indoor environment, a
target application scenario for the technology. In particular:

• We demonstrate that it is feasible to create generic plug-
gable sensor models that can be successfully used in un-
seen environments without further scene analysis; this po-
tentially opens a range of possibilities as future works can
consider the removal of the need for a labor intensive scene
analysis phase for unseen environments.

• We have focused on deployability, therefore we have evalu-
ated our approach in an unseen environment with no scene
analysis, this is contrast to previous studies that mainly fo-
cused on improving only accuracy.

• We have demonstrated that modeling pose using the the
two proposed approaches significantly improves estimation
accuracy usingfive differentmeasurementmodels; here prob-
abilistic multilateration with pose achieves the best results.

• Although it is difficult to compare with previous studies di-
rectly because of, for example, different mobility settings,
environmental settings, beacon types and deployments, we
obtained a mean error of approximately 23 cm in a new un-
seen environment of 7.5 m × 9 m in a real-time tracking ex-
periment in the wild using our probabilistic multilateration
compared to other four methods we considered.

• We release our system implementation and tracking algo-
rithms to support researchers in the field.

• Although our system is designed specifically for tracking
people in an indoor environment, the entire concept can be
applied just as well to objects or other environments.

Despite our successful development of a field deployable system
for tracking, our approach is not without limitations and room for
improvement.The greatest determinant of accuracy are the generic
sensor models. We have devised three environments which we feel
cover a range of possible cases in an indoor house setting. How-
ever, it would be better to decompose and add to these three cat-
egories to increase the granularity of the environment types we
have considered.

Another key determinant of accuracy is how we monitor and
track the pose of the target. As our results show, incorporating
pose will significantly improve the performance of the algorithm
as pose has a direct influence on the observed RSSI readings. Al-
thoughwe do allow for pose to be continuous in that it can take any
value between 0° and 360°, we only consider four orientationswith
respect to beacons when we apply our algorithms. Each additional
orientation that we consider requires an additional set of data from
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scene analysis. This not only means that we require more data col-
lection during an offline model building phase, but also results in
increased computational costs. However, considering more granu-
lar orientations and/or improved likelihood formulations will im-
prove accuracy at the expense of computational costs.

Notably, the computation of likelihoods only made use of the
instantaneous RSSI readings, an improvement would be to include
other measurements possible from radio waves. Examples include
RSSI readings from multiple advertising channels help eliminate
noisy channels or making use of other information that can be
extracted from the signal such as phase and incorporating the es-
timation of channel properties to be part of the estimated state
to account for dynamic variations in RSSI measurements due to
changes in the environment.

Further, as illustrated in our measurement results in Figure 3
and Figure 4, tracking in narrow passages can benefit from prop-
agation models that explicitly consider multi-path propagation as
opposed tomodels that attempted to capture the variability or noise
in RSSI measurements.

We leave the above studies as well as multiple deployments and
testing in spatial tracking applications to understand the changes
in human behavior of older people for future work.
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