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Abstract—This work addresses the challenging problem of
online managing labels from a sequence of unlabelled multi-
object estimates, which is a crucial task in multi-object tracking,
particularly in noisy environments with unknown and time-
varying numbers of mobile objects. The considered problem
requires solving a multi-dimensional assignment problem, which is
an NP-hard problem. In this paper, we propose reformulating the
aforementioned label management problem within the recursive
Bayesian framework and leveraging the effectiveness of the
labelled multi-Bernoulli (LMB) filter to accurately and efficiently
assign labels to unlabelled multi-object estimates in real-time. The
proposed LMB labelling (LMBL) algorithm is agnostic to the
filtering method and is capable of labelling any unlabelled multi-
object estimates. Experimental results demonstrate significant
labelling performance improvements of our proposed LMBL
approach compared to other state-of-the-art methods. This work
presents a robust and efficient solution for the critical problem of
label management in multi-object tracking applications.

Index Terms—Label Management, Re-ID, Point Correspon-
dences, RFS, LMBL.

I. INTRODUCTION

Multiple Object Tracking (MOT) addresses the complex
challenge of simultaneously estimating the time-varying num-
ber of objects (due to random appearances/disappearances)
and their corresponding trajectories from noisy measurements.
This process is further complicated by false alarms, incorrect
detections, and uncertain data associations (i.e., ambiguous
measurement-to-object origins). MOT is a mature field that has
evolved over six decades since the 1960s, finding applications
across diverse domains such as surveillance [1], search and
rescue operations [2], [3], autonomous driving [4], robotics [5],
[6], remote sensing [7], star tracking [8], computer vision [9],
[10], aerospace [11], and biomedical sensing [12], [13].

Although there are several approaches to solving MOT prob-
lems, most algorithms can be categorised into one of the follow-
ing paradigms: i) Multiple Hypothesis Tracking (MHT) [11],
ii) Joint Probabilistic Data Association (JPDA) [14], [15] and
iii) Random Finite Set (RFS) [16], [17]. MHT and JPDA are
traditional MOT approaches that first solve the data association
and then employ a single-object filter (e.g., Kalman Filter). In
contrast, the RFS framework, first introduced in 1997 in [18]
and explained in detail in [16], [17], considers the multi-object
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Fig. 1. a) An example of a label management problem: How to assign
labels for a multi-object estimate X̂k given the labelled multi-object estimate
X̂k−1. b) One possible hypothesis: all objects survive from time k − 1 to
time k, and one object is born at time k with new label ℓ(4). c) Another
possible hypothesis: two objects (ℓ(1) and ℓ(2)) survive from time k − 1 to
k, while object ℓ(3) dies, and two objects (ℓ(4) and ℓ(5)) are born at time k.
We propose using the LMB filter to solve this problem, which considers all
possible hypotheses, including hypotheses (b) and (c).

state as a finite set and aims to find the optimal/sub-optimal
estimation of a multi-object state instead of concentrating
on solving the data-association problem. Some RFS-based
algorithms, such as Probability Hypothesis Density (PHD) [19]
and Cardinalised Probability Hypothesis Density (CPHD) [20]
filters, do not involve solving data association at all, which
significantly improves the processing time.

Since its introduction in 1997 [18], the RFS-based frame-
work has also considered including the object’s identity/label
in the state, which is crucial for acquiring interactions amongst
multiple objects and obtaining individualised object-related in-
formation (e.g., trajectories). However, most initial RFS-based
filters (e.g., PHD, CPHD, MB, PMBM) [20]–[23] omitted the
object labels. The labelled RFS theory, proposed in 2011 [24],
yielded a mathematically rigorous formulation to realise the
first Bayes-optimal MOT algorithm, namely the Generalised
Labelled Multi-Bernoulli (GLMB) filter in 2013 [25], [26]. The
GLMB filter has been effectively implemented using Gibbs
sampling via a joint prediction-update procedure [27], and
further simplified with a linear complexity using tempered
Gibbs sampling technique [28]. An alternative computationally
efficient filter based on labelled Random Finite Sets (RFS) is
the Labelled Multi-Bernoulli (LMB) filter [29]. This approach
systematically approximates the Generalised Labelled Multi-



Bernoulli (GLMB) filter by aligning its first-order statistical
moment.

One of the key challenges in MOT is the unknown data as-
sociation problem, where the number of association hypotheses
increases exponentially over time. Finding the optimal set of as-
sociation hypotheses is a computationally expensive task, often
requiring efficient algorithms such as Murty’s algorithm [30],
[31] or Gibbs sampling techniques [27].

Alternatively, efficient MOT algorithms can be realised by
solving the data association problems directly on multi-object
estimates, which is equivalent to the re-identification (re-ID)
or Label Management problem (as illustrated in Fig. 1). A
significant number of recent re-ID methods are based on bi-
partition matching between two scans or frames (e.g., using the
Hungarian algorithm) leveraging spatial information [32], [33]
and/or deep learning features [34], [35]. Multi-frame matching
via a graph was also proposed in [36], and later applied for
unlabelled RFS filters in [37].

In this work, we realise a new and effective algorithm to
solve MOT by performing label assignments between two scans
using the LMB filter on multi-object estimates. The proposed
method is agnostic to filter types and is capable of labelling
the non-labelled multi-object estimates from any non-labelled
MOT filters (e.g., PHD, CPHD filters). The developed algo-
rithm utilises the robustness of LMB filters to assign correct
labels to multi-object estimates via a soft-decision process in
LMB filters, thereby reducing label switching errors due to
misdetections compared to traditional methods [36].

The remainder of this work is organised as follows. Section
II provides important information on labelled RFSs and their
corresponding filters. The realised label management algorithm,
utilising the LMB filter for multi-object estimates, is shown in
Section III. Section IV presents experiments and comparisons
with baseline methods. Section V concludes our observations.

II. BACKGROUND

A. Notations

In this work, we adopt the conventional notations used
in [26]. Lowercase letters (e.g., x,x) are used to represent
individual object states, whereas uppercase letters (e.g., X,X)
denote multi-object states. Boldfaced letters (e.g., x,X,π)
are used to denote labelled object states and labelled multi-
object densities. Blackboard letters such as L,X,Z denote
spaces. The class of all finite subsets of X is denoted by
F(X). The inner product of two functions is represented as
⟨h, g⟩ =

∫
h(x)g(x)dx, and the multi-object exponential is

given by fX =
∏

x∈X f(x), with f∅ = 1. The number of
members of a set X is represented by |X|. To accommodate
different types of arguments (e.g., sets, vectors), we define the
Kronecker delta function δY (Z) = 1 if Z = Y else δY (Z) = 0,
and indicator function 1Y (Z) = 1 if Z ⊆ Y else 1Y (Z) = 0.

B. Random Finite Sets

Random finite sets (RFSs) are set-valued random vari-
ables [16]. The members of an RFS are characterised by their

stochastic nature and lack of inherent order, making the RFS an
ideal framework for naturally representing multi-object states.
A labelled RFS can be considered as an extension of the stan-
dard RFS, where each element is assigned a unique identifier
or label [25]. Employing Mahler’s Finite Set Statistics (FISST)
methodology, an RFS can be comprehensively characterised
by its corresponding FISST density function. In this paper,
we present and utilise three different types of Random Finite
Sets: Bernoulli RFS, Labelled Multi-Bernoulli (LMB) RFS and
Generalised Labelled Multi-Bernoulli (GLMB) RFS.

1) Bernoulli RFS: The Bernoulli RFS is one of the simplest
types of RFS and serves as a fundamental building block for
more complex RFS models. It is beneficial for representing
the state of a single object that may or may not exist. Two
parameters characterise a Bernoulli RFS X are: i) r is the
probability of existence (0 < r < 1); and ii) p(·) is the
probability density of the single object’s state, given that it
exists. The density π(·) of a Bernoulli RFS is given by

π(X) =

{
rp(x), X = {x}
1− r, X = ∅

. (1)

Multi-Bernoulli RFS is a union of multiple Bernoulli RFSs.
2) LMB RFS: The LMB RFS extends the Multi-Bernoulli

RFS by incorporating unique labels for each object. It is defined
by a set of parameters {r(ℓ), p(ℓ)}ℓ∈L, where r(ℓ) denotes
the existence probability of an object with label ℓ, and p(ℓ)

represents its corresponding spatial density if the object ℓ exists.
The density π of an LMB RFS is expressed as [29]

π(X) = △(X)w(L(X))pX, (2)

where △(X) = δ|X|(L(|X)|) ensures unique labels, with L(X)
representing labels extracted from X; w(L) = (1 − r)L\LrL;
and p(x) = p(x, ℓ) = p(ℓ)(x).

3) GLMB RFS: The GLMB RFS represents a more general
form of the LMB RFS. It is described as a combination
of multi-object exponentials, each corresponding to a distinct
combination of object labels, or a hypothesis. The GLMB
is completely characterised by its density function, which is
expressed as [25], [26]:

π(X) = △(X)
∑
c∈C

w(c)(L(X))[p(c)]X, (3)

where C is a discrete set. In practice, the GLMB density is often
represented under the δ-GLMB form, where C = Ξ × F(L)
with Ξ is a discrete space containing all association histories,
w(c)(L) = w(ξ,J)δJ(L), and p(c) = p(ξ,J) = p(ξ).

C. Multi-Object Tracking via RFS Framework

In a multi-object system, akin to a traditional dynamical
system where the system state is represented by a time-evolving
vector, the system state is instead a finite set. To model the
uncertainty in this multi-object state, an RFS is utilised, much
like a random vector models uncertainty in a state vector.
Given the measurement history Z1:k = (Z1, . . . , Zk) from the
initial time to time k, the density of multi-object states X can



be recursively propagated from an initial prior π0(X) using
Mahler’s set integral (FISST) through Bayesian recursion [16]:

πk|k−1(Xk) =

∫
πk−1(X)fk|k−1(Xk|X)δX, (4)

πk(Xk|Zk) =
πk|k−1(Xk)g(Zk|Xk)∫
πk|k−1(X)g(Zk|X)δX

, (5)

where fk|k−1(·|·) represents the multi-object transition density
from time k−1 to time k, incorporating the dynamics of object
survival, birth, and death; The function g(Zk|·) represents the
multi-object observation likelihood at time k, incorporating
false alarms, misdetections, and uncertainties in data associ-
ation.

1) GLMB Filter: In a typical multi-object state space system,
the GLMB RFS maintains its conjugacy property and is pre-
served via Bayesian recursion [25], as described by equations
(4) and (5). Consequently, the Bayes recursion transforms a
GLMB multi-object density at time k−1 into a GLMB density
at time k, given by:

πk = Ω(πk−1, Zk), (6)

where Ω represents the GLMB Bayes recursive operator (see
[27] for detailed expressions of Ω). Thus, beginning with an
inaugural GLMB RFS, all successive multi-object densities are
GLMB RFSs. However, the uncertainties of data association
cause the number of hypotheses within the GLMB density
to grow super-exponentially over time, requiring truncation to
control this growth.

2) LMB Filter: The LMB RFS does not remain closed
under the Bayes update in (5). This is because an initial
LMB density transforms into a GLMB density after the update
step, rather than remaining an LMB [29]. Consequently, to
implement the LMB filter, the updated GLMB RFS must be
approximated as an LMB RFS by preserving its first moment,
denoted by the transformation T . Given the updated GLMB
π =

{
(w(ξ)(J), p(ξ)) : (ξ, J) ∈ Ξ × F(L)

}
, its LMB first

moment approximation is T (π) = {r(ℓ), p(ℓ)}ℓ∈L, where:

r(ℓ) =
∑
ξ,J

1J(ℓ)w
(ξ)(J), (7)

p(ℓ)(x) =
1

r(ℓ)

∑
ξ,J

1J(ℓ)w
(ξ)(J)p(ξ)(x, ℓ). (8)

In essence, the LMB filter involves two steps: i) propagate the
LMB density from the current time to the next time step via
GLMB recursion as per (6), and ii) approximate the resulting
GLMB density as an LMB density, such that:

πk = T (Ω(πk−1, Zk)). (9)

III. LABEL MANAGEMENT METHOD

A. Problem Statement

The core challenge addressed in this paper is the labelling of
multi-object state estimates in a dynamic environment. Given
a sequence of unlabeled multi-object state estimates X̂1:k =

(X̂1, . . . , X̂k) from the initial time to the current time k, our
objective is to assign appropriate labels L1:k = (L1, . . . , Lk)
to X̂1:k, thereby realising labelled multi-object estimates X̂1:k,
where Lk = L(X̂k).

Solving this problem as a multi-dimensional assignment
problem (with dimension k increasing over time) is computa-
tionally intractable. Therefore, we propose a tractable recursive
approach. The problem can be reformulated as follows:

Given:
• A set of labelled multi-object state estimates X̂k−1 =

{(x(1)
k−1, ℓ

(1)
k−1), . . . , (x

(N)
k−1, ℓ

(N)
k−1)} at the previous time

step k − 1.
• An unlabeled multi-object state estimate X̂k =

{x(1)
k , . . . , x

(M)
k } at the current time step k.

The task is to assign appropriate labels Lk = {ℓ(1)k , . . . , ℓ
(M)
k }

to X̂k (illustrated in Fig. 1).
It is crucial to recognise that the number of objects may

fluctuate between time steps due to birth and death processes as
well as false alarms and misdetections. When assigning labels,
we must consider two scenarios:

• Objects at time k are survivors from time k − 1: These
objects should retain their previous labels,

• Objects at time k are newly born: These objects should
be assigned new, unique labels.

Traditional approaches, such as bi-partition matching [32],
attempt to solve this problem through hard decision processes.
However, these methods often fall short in accounting for
complexities like misdetections, false alarms, and birth/death
processes.

In this work, we propose a novel approach using a Labelled
Multi-Bernoulli (LMB) filter. This method incorporates labels
directly into the state estimates, providing a more robust and
flexible solution to the multi-object labelling problem. Our
approach can handle the uncertainties and dynamics inherent
in MOT scenarios, offering a significant improvement over
existing techniques.

B. Label Management using LMB Filters

Proposed Approach: In this work, we propose consider-
ing the multi-object estimate1 X̂k as a measurement Zk at
time k with a single-object measurement likelihood g(z|x) =
N (z;x,R) where N (·;µ,Σ) represents a Gaussian density
with µ and Σ are its mean and covariance, respectively. In
this work, we assume the motion model f(·|·) of objects is
known and is equivalent to the original state space model used
to obtain the non-labelled estimates. Additionally, we propose
using the measurement-driven adaptive birth procedure [29]
to initialise the LMB birth distribution. They are detailed as
follows.

Prior: At initial time (k = 0), the initial LMB density π0 =
∅. Using the recursive LMB filter in (9) for time 0 to k − 1
with Zi ≡ X̂i for i = 1, . . . , k − 1, which yields πk−1.

1The estimate X̂k is a realisation of multi-object state of Xk .



Prediction: At current time k, the predicted LMB density
comprises the surviving density πS,k of labelled tracks from
time k − 1, as well as the adaptive birth density πB,k.

πk|k−1 = πS,k ∪ πB,k. (10)

Here, using the measurement-driven birth procedure and to
prevent data incest, the birth density πB,k at time k depends
on the set of measurements Zk−1 at the previous time k − 1,
given by:

πB,k =
{
r
(ℓ)
B,k(z), p

(ℓ)
B,k(x|z)

}
ℓ∈Bk

, (11)

where Bk = {(k, 1), . . . , (k, |Zk−1|)} and

r
(ℓ)
B,k(z) = min

(
rB,max,

λB,k(1− rU (z))∑
ζ∈Zk−1

(1− rU (ζ))

)
. (12)

In this context, rU (z) represents the probability of associating
the measurement z with one of the objects, as detailed in Equa-
tion (73) of [29]. The term λB,k denotes the expected number
of new births. For this study, we set λB,k = max(0,M −N),
implying that if the number of estimates at time k is less than
or equal to N , no new objects (i.e., labels) are introduced.

Update: Given the predicted LMB density πk|k−1 and
the measurement Zk ≡ X̂k, the posterior GLMB density is
computed via (5):

π
(glmb)
k (Xk) ∝ g(Zk|Xk)πk|k−1(Xk). (13)

Here, the multi-object observation likelihood function is given
by

g(Z|X) ∝
∑

θ∈Θ(L(X))

[
Ψ

(θ◦L(·))
Z (·)

]X
, (14)

where Θ(J) is the set of association maps of J , and

Ψ
(i)
Z (x) =

PD(x)
g(z(i)|x)
κ(z(i))

, i ∈ 1, . . . , |Z|

1− PD(x), i = 0

. (15)

Here, κ(·) denotes the clutter density which follows a Poisson
distribution with a clutter rate of ⟨1, κ⟩. The posterior GLMB
density is approximated as an LMB density via the operator T
defined in (7) and (8): πk = T (π

(glmb)
k ).

Modified LMB Estimator: Given the posterior LMB den-
sity πk = {r(ℓ)k , p

(ℓ)
k }ℓ∈Lk

, one needs to use an estimator to
compute the labelled multi-object estimate X̂k from πk. In this
work, we have an advantage compared to the standard LMB
filter that the number |X̂k| of multi-object estimates is known
and equal to the cardinality of |Zk| since we consider Zk ≡ X̂k.
Additionally, since Zk ≡ X̂k, we propose constructing an
additional πA,k LMB density from Zk (equivalent the birth
density πB,k+1 at the next time step), defined as:

πA,k =

{
r
(ℓ)
A (z), p

(ℓ)
A (x|z)

}
ℓ∈Bk+1

, (16)

where Bk+1 = {(k + 1, 1), . . . , (k + 1, |Zk|)} and

r
(ℓ)
A (z) = min

(
rB,max,

λB,k+1(1− rU (z))∑
ζ∈Zk

(1− rU (ζ))

)
, (17)

and λB,k+1 = min(0, |Zk| − |Zk−1|).
Let π̃k be the modified LMB density, given by

π̃k = πk ∪ πA,k =
{
r̃
(ℓ)
k , p̃

(ℓ)
k

}
ℓ∈Lk∪Bk+1

, (18)

and L̃k be the list of |Zk| labels with the highest existence
probability in π̃k. The labelled multi-object estimate X̂k can
be computed from π̃k using the maximum a posterior (MAP)
method, given by:

X̂k =
{
(x, ℓ) : x =

∫
yp̃

(ℓ)
k (y)dy, ℓ ∈ L̃k

}
. (19)

IV. EXPERIMENTS

We demonstrate the performance of our proposed label
management algorithm (LMBL) via simulated experiments in
MATLAB. We consider two different baseline algorithms: i)
the bi-partition matching labelling algorithm [32] (denoted as
BML) and ii) the multi-frame graph labelling algorithm [36]
(denoted as MGL). For MGL, the number of frames used
for label matching is 5. Experiments were conducted on a
workstation with two EPYC 7702 Processors @ 2.0 GHz and
1024 GB of memory. All results were computed as the average
over 100 Monte Carlo (MC) runs. We utilise labelling com-
putational time, the optimal sub-pattern assignment (OSPA)
metric [38], and the OSPA-on-OSPA (OSPA(2)) metric [39]
to evaluate the labelling performance of these algorithms. A
smaller OSPA(2) value indicates superior tracking performance
regarding localisation accuracy and minimising track switching
errors.

We conduct a 2D tracking experiment featuring a fluctu-
ating number of objects due to the object’s random appear-
ances/disappearances with a total number of objects of 22.
The entire simulation lasts for 100 s, with measurements taken
at intervals of ∆ = 1 s. Fig. 2 presents the experimental
setup, showcasing the ground truth trajectories of the 22 mobile
objects.

Object Motion Model: The objects are described by a
constant velocity model within a two-dimensional environment.
Each individual state, x = [px, ṗx, py, ṗy]

⊤, represents its
kinematic state, with ⊤ indicating the transpose. The dynamic
model is given by fk|k−1(xk|xk−1) = N (xk;Fxk−1, Q). The
state transition matrix F and the process noise covariance Q
are defined as:

F =

[
1 ∆
0 ∆

]
⊗ I2; Q = σ2

v

[
∆3/3 ∆2/2
∆2/2 ∆

]
⊗ I2

where ⊗ represents Kronecker product, I2 is the identity
matrix, and σv = 5 m/s2 is the process noise standard deviation.
The survival probability PS of each object is 0.99.

Unlabelled Filter: To validate the effectiveness of our
proposed label management algorithm, we employ the CPHD
filter [20] to generate the unlabelled multi-object estimate
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Fig. 2. Ground truth trajectories of 22 mobile objects in a 2D environment.
We use ⃝/□ to represent each object’s starting/stopping locations. Different
colours denote different object labels.

TABLE I
AVERAGED TRACKING PERFORMANCE OVER 100 MC RUNS

Methods OSPA [m] OSPA(2) [m] Label Time [ms]

BML 18.13 45.03 4.83
MGL 18.13 42.69 155.78
LMBL (Ours) 10.37 25.34 30.44

X̂k. For measurements of the CPHD filter, we utilise a 2D
position sensor with a detection probability of PD = 0.95.
Each detected object x provides a noisy measurement z =
[zx, zy]

⊤. The likelihood of the measurement is defined as
g(cphd)(z|x) = N (x;Gx, σ2

rI2), where G = [I2, 02] and 02
is a zero matrix, with measurement noise σr = 10 m. Each
measurement interval also includes clutters (false alarms) in
the measurement set, with a clutter rate of 10, i.e., on average,
there are 10 clutters per scan.

Results: Fig. 3 shows the labelled multi-object state es-
timates for a particular run using a) BML, b) MGL, and
c) LMBL. Table I presents a detailed comparative analysis,
averaged over 100 MC trials, between our proposed label
management approach (LMBL) and the baseline methods.

The experimental outcomes validate that our labelling al-
gorithm significantly outperforms BML and MGL in terms
of OSPA and OSPA(2), while only slightly slower than the
BML method, which is expected since BML is the simplest
method and does not consider the joint probabilistic association
when assigning new labels. As a result, BML yields the worst
performance with a substantial amount of track switching (see
Fig. 3a). MGL performs slightly better than BML (see Fig. 3b)
since it uses multi-frame information to resolve labels; how-
ever, MGL requires significant labelling time for solving the
multi-dimensional assignment problem across multiple frames.
Additionally, MGL is susceptible to misdetections resulting in
several label-switching errors. In contrast, the proposed LMBL
method yields the best labelling result with minimal label
switching errors as shown in Fig. 3c.
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Fig. 3. The labelled estimated trajectories from unlabelled estimates X̂1:100

for a particular run using a) Bi-partition Matching Labelling (BML), b) Multi-
frame Graph Labelling (MGL), and c) Our proposed LMB Labelling (LMBL).
Each colour denotes each estimated object label.

V. CONCLUSION

We have developed an online, efficient and robust label
management algorithm for unlabelled multi-object estimates.
Our solution employs a novel approach where multi-object
estimates are treated as a measurement set, and a modified
LMB filter is used to assign labels to these unlabelled estimates.



The proposed method is agnostic to filter types, enabling it to
label unlabelled multi-object estimates from any non-labelled
multi-object tracking (MOT) filters. Experimental results high-
light the robustness of our LMBL method, demonstrating its
effectiveness in labelling a sequence of unlabelled multi-object
estimates generated from a CPHD filter. The improved accuracy
of LMBL is attributed to the soft-decision process in LMB
filters, which is more effective than the hard-decision labelling
process employed in the baseline methods. We envisage that
the proposed method can be extended with the smooth estima-
tor [40], or multi-sensor and/or multi-scan approaches [41]–
[43].
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